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This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization
Algorithm (WaOA), which mimics walrus behaviors in nature. The fundamental inspirations employed
in WaOA design are the process of feeding, migrating, escaping, and fighting predators. The WaOA
implementation steps are mathematically modeled in three phases exploration, migration, and
exploitation. Sixty-eight standard benchmark functions consisting of unimodal, high-dimensional
multimodal, fixed-dimensional multimodal, CEC 2015 test suite, and CEC 2017 test suite are employed
to evaluate WaOA performance in optimization applications. The optimization results of unimodal
functions indicate the exploitation ability of WaOA, the optimization results of multimodal functions
indicate the exploration ability of WaOA, and the optimization results of CEC 2015 and CEC 2017 test
suites indicate the high ability of WaOA in balancing exploration and exploitation during the search
process. The performance of WaOA is compared with the results of ten well-known metaheuristic
algorithms. The results of the simulations demonstrate that WaOA, due to its excellent ability to
balance exploration and exploitation, and its capacity to deliver superior results for most of the
benchmark functions, has exhibited a remarkably competitive and superior performance in contrast
to other comparable algorithms. In addition, the use of WaOA in addressing four design engineering
issues and twenty-two real-world optimization problems from the CEC 2011 test suite demonstrates
the apparent effectiveness of WaOA in real-world applications. The MATLAB codes of WaOA are
available in https://uk.mathworks.com/matlabcentral/profile/authors/13903104.

Recently, many optimization problems in science, engineering, industry, and technology must be solved using
optimization techniques. From a mathematical point of view, decision variables, constraints, and objective func-
tions are the three main parts of modeling an optimization problem. The purpose of optimization is to quantify
the decision variables of the problem so that while respecting the constraints, it leads to achieving the minimum
(minimization problems) or maximum (maximization problems) value for the objective function'. Applied
techniques in solving optimization problems fall into the deterministic and stochastic approaches. To choose
the suitable technique to solve an optimization problem, a user needs complete information on comparing
problem-solving techniques. In contrast, more than the user’s available information is often needed. Stochastic
approaches, which are mainly based on random search in the problem-solving space, can deal with black-box
problems more simply than many deterministic algorithms. These approaches are also suitable for problems
where the evaluations of the functions are corrupted by noise. Each deterministic and stochastic approach has
various advantages, and generally, none can be considered superior. More information and a detailed comparison
of deterministic and stochastic approaches are provided in Krasov’s book>

As one of the most widely used stochastic approaches, metaheuristic algorithms, using stochastic operators,
trial and error concepts, and stochastic search, can provide appropriate solutions to optimization problems with-
out requiring derivative information from the objective function. The simplicity of ideas, easy implementation,
independence from the type of problem, and no need for a derivation process, are among the advantages that
have led to the popularity and pervasiveness of metaheuristic algorithms among researchers’. The optimization
process in metaheuristic algorithms begins with the random generation of several initial feasible solutions in
the problem search space. Then, in an iterative-based process, based on the effectiveness of the algorithm steps,
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these initial solutions are improved. Finally, the best solution found during the implementation of the algorithm
is introduced as the solution to the problem*. However, none of the metaheuristic algorithms guarantee that they
will be able to provide the optimal global solution. This insufficiency is due to the nature of random search in
these types of optimization approaches. Hence, the solutions derived from metaheuristic algorithms are known
as quasi-optimal solutions®.

Exploration and exploitation capabilities enable metaheuristic algorithms to provide better quasi-optimal
solutions. Exploration refers to the ability to search globally in different areas of the problem-solving space to
discover the best optimal area. In contrast, exploitation refers to the ability to search locally around the available
solutions and the promising areas to converge to the global optimal. Balancing exploration and exploitation
is the key to the success of metaheuristic algorithms in achieving effective solutions®. Achieving better quasi-
optimal solutions has been the main challenge and reason for researchers’ development of various metaheuristic
algorithms”®.

The main research question is that despite the numerous metaheuristic algorithms introduced so far, is there
still a need to develop new algorithms? The No Free Lunch (NFL) theorem® answers the question that the opti-
mal performance of an algorithm in solving a set of optimization problems gives no guarantee for the similar
performance of that algorithm in solving other optimization problems. The NFL theorem concept rejects the
hypothesis that a particular metaheuristic algorithm is the best optimizer for all optimization applications over all
different algorithms. Instead, the NFL theorem encourages researchers to continue to design newer metaheuristic
algorithms to achieve better quasi-optimal solutions for optimization problems. This theorem has also motivated
the authors of this paper to develop a new metaheuristic algorithm to address optimization challenges.

This paper’s novelty and contribution are in designing a new metaheuristic algorithm called the Walrus
Optimization Algorithm (WaOA), which is based on the simulation of walrus behaviors in nature. The main
contributions of this article are as follows:

® The natural behaviors of walruses inspire WaOA’s design in feeding when migrating, fleeing, and fighting
predators.

o  WaOA is mathematically modeled in three phases: exploration, exploitation, and migration.

e The efficiency of WaOA in handling optimization problems is tested on sixty-eight standard objective func-
tions of various types of unimodal, multimodal, the CEC 2015 test suite, and the CEC 2017 test suite.

®  WaOA performance is compared with the performance of ten well-known metaheuristic algorithms.

® The success of WaOA in real-world applications is challenged in addressing four engineering design issues
and twenty-two real-world optimization problems from the CEC 2011 test suite.

The rest of the paper is as follows. The literature review is presented in the “Literature review” section. The
proposed WaOA approach is introduced and modeled in the “Walrus Optimization Algorithm” section. Simu-
lation studies are presented in the “Simulation studies and results” section. The efficiency of WaOA in solving
engineering design problems is evaluated in the “WaOA for real world-application” section. Conclusions and
future research directions are included in the “Conclusions and future works” section.

Literature review

Metaheuristic algorithms are based on the inspiration and simulation of various natural phenomena, animal
strategies and behaviors, concepts of biological sciences, genetics, physics sciences, human activities, rules of
games, and any evolution-based process. Accordingly, from the point of view of the main inspiration used in
the design, metaheuristic algorithms fall into five groups: evolutionary-based, swarm-based, physics-based,
human-based, and game-based.

Evolutionary-based metaheuristic algorithms have been developed using the concepts of biology, natural
selection theory, and random operators such as selection, crossover, and mutation. Genetic Algorithm (GA) is
one of the most famous metaheuristic algorithms, which is inspired by the process of reproduction, Darwin’s
theory of evolution, natural selection, and biological concepts'’. Differential Evolution (DE) is another evolu-
tionary computation that, in addition to using the concepts of biology, random operators, and natural selection,
uses a differential operator to generate new solutions''.

Swarm-based metaheuristic algorithms have been developed based on modeling natural phenomena, swarm-
ing phenomena, and behaviors of animals, birds, insects, and other living things. Particle Swarm Optimization
(PSO) is one of the first introduced metaheuristics methods and was widely used in optimization fields. The main
inspiration in designing PSO is the search behaviors of birds and fish to discover food sources'>*. Ant Colony
Optimization (ACO) is a swarm-based method inspired by the ability and strategy of an ant colony to identify the
shortest path between the colony to food sources'*. Grey Wolf Optimization (GWO) is a metaheuristic algorithm
inspired by grey wolves’ hierarchical structure and social behavior while hunting'®. Marine Predator Algorithm
(MPA) has been developed inspired by the ocean and sea predator strategies and their Levy flight movements to
trap prey'S. The strategy of the tunicates and their search mechanism in the process of finding food sources and
foraging have been the main inspirations in the design of the Tunicate Swarm Algorithm (TSA)"”. Some other
swarm-based methods are White Shark Optimizer (WSO)'8, Reptile Search Algorithm (RSA)*, Raccoon Opti-
mization Algorithm (ROA)?, African Vultures Optimization Algorithm (AVOA)?*, Farmland Fertility Algorithm
(FFA)?, Slime Mould algorithm (SMA)?, Mountain Gazelle Optimizer (MGO)*, Sparrow Search Algorithm
(SSA)*, Whale Optimization Algorithm (WOA)%, Artificial Gorilla Troops Optimizer (GTO)%, and Pelican
Optimization Algorithm (POA).

Physics-based metaheuristic algorithms have been inspired by physics’ theories, concepts, laws, forces, and
phenomena. Simulated Annealing (SA) is one of the most famous physics-based methods, the main inspiration
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of which is the process of annealing metals. During this physical process, a solid is placed in a heat bath, and the
temperature is continuously raised until the solid melts. The solid particles are physically separated or randomly
placed. From such a high energy level, the thermal bath cools slowly as the temperature decreases so that the
particles can align themselves in a regular crystal lattice structure®. Gravitational Search Algorithm (GSA) is
a physics-based computational method inspired by the simulation of Newton’s law of universal gravitation and
Newton’s laws of motion among masses housed in a system™. Applying the three concepts of a black hole, white
hole, and wormhole in cosmology science has been the inspiration for the design of the Multi-Verse Optimizer
(MVO)?*. Some other physics-based methods are: Water Cycle Algorithm (WCA)??, Spring Search Algorithm
(SSA)*, Atom Search Optimization (ASO)**, Quantum-inspired metaheuristic algorithms®, Momentum Search
Algorithm (MSA)*¢, and Nuclear Reaction Optimization (NRO)*".

Human-based metaheuristic algorithms have been developed inspired by human activities, social relation-
ships, and interactions. Teaching Learning Based Optimization (TLBO) is the most widely used human-based
metaheuristic algorithm in which the interactions between teacher and students, as well as students with each
other in the educational space, are its main source of inspiration®. The efforts of two sections of society, includ-
ing the poor and the rich, to improve their financial situation have been the main idea in the design of Poor and
Rich Optimization (PRO)*. Some other human-based methods are Archery Algorithm (AA)*, Brain Storm
Optimization (BSO)*, Chef Based Optimization Algorithm (CBOA)*3, War Strategy Optimization (WSO)*,
and Teamwork Optimization Algorithm (TOA)*.

Game-based metaheuristic algorithms have been introduced based on simulating the rules governing various
individual and group games and imitating the behaviors of players, referees, coaches, and other effective interac-
tions. E.g., competition of players in the tug-of-war game under the rules of this game has been the main idea
used in designing the Tug-of-War Optimization (TWO) algorithm*. Premier Volleyball League (PVL) algorithm
is introduced based on mathematical modeling of player interactions, competitions, and coaching instructions
during game*. Puzzle Optimization Algorithm (POA) is another game-based metaheuristic algorithm that has
been produced based on players trying to solve puzzles and getting help from each other to arrange puzzle pieces
better”. Some other game-based methods are Orientation Search Algorithm (OSA)*, Ring Toss Game-Based
Optimization (RTGBO)*, Football Game Based Optimization (FGBO)*°, Dice Game Optimization (DGO)*!,
and Orientation Search Algorithm (OSA)*.

Based on the best knowledge gained from the literature review, no metaheuristic algorithm has been devel-
oped based on the simulation of the behaviors and strategies of walruses. However, intelligent walrus behaviors
such as food search, migration, escape, and fighting with predators are prone to designing an optimizer. In the
next section, based on the mathematical modeling of natural walrus behaviors, a new metaheuristic algorithm
is developed to handle optimization applications to address this research gap.

Walrus Optimization Algorithm
In this section, employed fundamental inspiration and the theory of the proposed Walrus Optimization Algo-
rithm (WaOA) is stated, then its various steps are modeled mathematically.

Inspiration of WaOA. Walrus is a big flippered marine mammal with a discontinuous distribution in the
Arctic Ocean and subarctic waters of the Northern Hemisphere around the North Pole®?. Adult walruses are
easily identifiable with their large whiskers and tusks. Walruses are social animals who spend most of their
time on the sea ice, seeking benthic bivalve mollusks to eat. The most prominent feature of walruses is the long
tusks of this animal. These are elongated canines seen in both male and female species that may weigh up to
5.4 kg and measure up to 1 m in length. Males’ tusks are slightly thicker and longer and are used for dominance,
fighting, and display. The most muscular male with the longest tusks dominates the other group members and
leads them™. An image of walrus is presented in Fig. 1. As the weather warms and the ice melts in late summer,
walruses prefer to migrate to outcrops or rocky beaches. These migrations are very dramatic and involve massive
aggregations of walruses®. The walrus has just two natural predators due to its large size and tusks: the polar bear
and the killer whale (orca). Observations show that the battle between a walrus and a polar bear is very long and
exhausting, and usually, polar bears withdraw from the fight after injuring the walrus. However, walruses harm

Figure 1. Walrus (the photo is uploaded from Wikimedia®).
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polar bears with their tusks during this battle. In the fight against walruses, killer whales can hunt them success-
fully, with minimal and even no injuries®.

The social life and natural behaviors of walruses represent an intelligent process. Of these intelligent behaviors,
three are the most obvious:

(i) Guiding individuals to feed under the guidance of a member with the longest tusks.

Tracking the best population member in the search process directs the algorithm toward promising areas. In
the social life of walruses, the most potent walrus, which can be recognized as having the longest tusk, is respon-
sible for guiding the other walruses. Moving walruses in this process leads to significant changes in their position.
Simulating these large displacements increases the algorithm’s ability in global search and exploration ability.

(ii) Migration of walruses to rocky beaches.

One of the natural behaviors of walruses is their migration due to warming weather in summer. In this pro-
cess, walruses make big changes in their position by moving towards outcrops or rocky beaches. In the WaOA
simulation for a walrus, the position of other walruses are assumed as migration destinations, one of these
positions is randomly selected, and the walrus moves towards it. In the design of WaOA, imitating this strategy,
global search and discovery capabilities are improved. The difference between the migration strategy and the
foraging process under the guidance of the strongest walrus is that in this process, the population update process
is prevented from relying on a particular member, such as the best member of the population. This updating
process prevents early convergence and the algorithm from getting stuck in local optima.

(iii) Fight or escape from predators.

The fighting strategy of walruses in the face of their predators, such as the polar bear and the killer whale,
is a long chase process. This chasing process takes place in a small area around the walrus position and causes
small changes in the walrus position. Therefore, simulating the small displacements of the walrus by aiming at
better positions during the fight leads to an increase in WaOA's ability to search locally and exploit to converge
to better solutions.

Mathematical modeling of these behaviors is the primary inspiration for developing the proposed WaOA
approach.

Algorithm initialization. WaOA is a population-based metaheuristic algorithm in which the searcher
members of this population are walruses. In WaOA, each walrus represents a candidate solution to the optimiza-
tion problem. Thus, the position of each walrus in the search space determines the candidate values for the prob-
lem variables. Therefore, each walrus is a vector, and the population of walruses can be mathematically modeled
using so-called the population matrix. At the beginning of WaOA implementation, populations of walruses are
randomly initialized. This WaOA population matrix is determined using (1).

X1 X1t XLj ot Xim
X=1|X; = [ X1 - Xij o Xim , (1)
XN Nxm XN,1 ©ct XN,j © XN,m Nxm

where X is the walruses’ population, X; is the ith walrus (candidate solution), x; ; is the value of the jth decision
variable suggested by the ith walrus, N is the number of walruses, and m is the number of decision variables.

As mentioned, each walrus is a candidate solution to the problem, and based on its suggested values for the
decision variables, the objective function of the problem can be evaluated. The estimated values for the objective
function obtained from walruses are specified in (2).

F F(Xy)
F=|F = | FXi) ) ()
EN N FQXN) | nsa

where F is the objective function vector and F; is the value of the objective function evaluated based on the ith
walrus.

Objective function values are the best measure of the quality of candidate solutions. The candidate solution
that results in the evaluation of the best value for the objective function is known as the best member. On the
other hand, the candidate solution that results in the worst value for the objective function is called the worst
member. According to the update of the values of the objective function in each iteration, the best and worst
members are also updated.

Mathematical modelling of WaOA. The process of updating the position of walruses in the WaOA is
modeled in three different phases based on the natural behaviors of this animal.

Phase 1: feeding strategy (exploration). Walruses have a varied diet, feeding on more than sixty species of
marine organisms, such as sea cucumbers, tunicates, soft corals, tube worms, shrimp, and various mollusks®.
However, walrus prefers benthic bivalve mollusks, particularly clams, for which it forages by grazing around the
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sea floor, seeking and detecting food with its energetic flipper motions and susceptible vibrissae®. In this search
process, the strongest walrus with the tallest tusks guides the other walrus in the group to find food. The length
of the tusks in the walruses is similar to the quality of the objective function values of the candidate solutions.
Therefore, the best candidate solution with the best value for the objective function is considered the strongest
walrus in the group. This search behavior of the walruses leads to different scanning areas of the search space,
which improves the exploration power of the WaOA in the global search. The process of updating the position
of walruses is mathematically modeled based on the feeding mechanism under the guidance of the most vital
member of the group, using (3) and (4). In this process, a new position for walrus is first generated according to
(3). This new position replaces the previous position if it improves the objective function’s value; this concept is
modeled in (4).

P
Xij = Xij + randi; - (SW; — Iij - xi;) ®

P P
X', F.' <F;
X: = i o> L i
! {Xi, else, (4)

where X is the new generated position for the ith walrus based on the 1st phase, !is its jth dimension, FP is
its ob)ectlve function value, rand; j are random numbers from the interval [0, 1], SW i 1s the best candidate solutlon
which is considered as the strongest walrus, and I; j are integers selected randomly between 1 or 2. I; ; is used to
increase the algorithm’s exploration ability so that if it is chosen equal to 2, it creates more significant and broader
changes in the position of walruses compared to the value of 1, which is the normal state of this displacement.
These conditions help improve the algorithm’s global search in escaping from the local optima and discovering
the original optimal area in the problem-solving space.

Phase 2: migration. One of the natural behaviors of walruses is their migration to outcrops or rocky beaches
due to the warming of the air in late summer. This migration process is employed in the WaOA to guide the wal-
ruses in the search space to discover suitable areas in the search space. This behavioral mechanism is mathemati-
cally modeled using (5) and (6). This modeling assumes that each walrus migrates to another walrus (randomly
selected) position in another area of the search space. Therefore, the proposed new position is first generated
based on (5). Then according to (6), if this new position improves the value of the objective function, it replaces
the previous position of walrus.

p2 _ ]y + randi)j . (xk,j — I,',j . xi,j)»Fk < F;; 5)
Xij xi,j—i—mndi,j-(x,-,j—xk,j),else,
x = { X% F? < Fi: ©)
Xl, else,

where Xl- is the new generated position for the ith walrus based on the 2nd phase, i ?is its jth dimension, F; P2
is its objective function value, Xk, k € {1,2,...,N}and k # i, is the location of selected walrus to migrate the
ith walrus towards it, xy; is its jth dimension, and Fy is its objective function value.

Phase 3: escaping and fighting against predators (exploitation). Walruses are always exposed to attacks by the
polar bear and the killer whale. The strategy of escaping and fighting these predators leads to a change in the
position of the walruses in the vicinity of the position in which they are located. Simulating this natural behavior
of walruses improves the WaOA exploitation power in the local search in problem-solving space around candi-
date solutions. Since this process occurs near the position of each walrus, it is assumed in the WaOA design that
this range of walrus position change occurs in a corresponding walrus-centered neighborhood with a certain
radius. Considering that in the initial iterations of the algorithm, priority is given to global search in order to
discover the optimal area in the search space, the radius of this neighborhood is considered variable so that it
is first set at the highest value and then becomes smaller during the iterations of the algorithm. For this reason,
local lower/upper bounds have been used in this phase of WaOA to create a variable radius with algorithm rep-
etitions. For simulation of this phenomenon in WaOA, a neighborhood is assumed around each walrus, which
first is generated a new position randomly in this neighborhood using (7) and (8). then if the value of the objec-
tive function is improved, this new position replaces the previous position according to (9).

P.
xi,j3 = xij + <lbltocal,j + <ubfocal] rand - Ib ocul])) (7)
bl = 4
Local bounds : ltm’l’f utbj’ (8)
ubloml,j =1

1
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where X is the new generated position for the ith walrus based on the 3rd phase, x;; is its jth dimension, F; Ps
is its ob]ectlve function value, ¢ is the iteration contour, Ibj and ub; are the lower and/ upper bounds of the ]th
variable, respectively, Ib] al,j and ubj,; ; j are local lower and local upper bounds allowable for the jth variable,
respectively, to simulate local search in the neighborhood of the candidate solutions.

Repetition process, pseudocode, and flowchart of WaOA. After updating the walruses’ position
based on the implementation of the first, second, and third phases, the first WaOA iteration is completed, and
new values are calculated for the position of the walruses and the objective functions. Update and improve can-
didate solutions is repeated based on the WaOA steps according to Egs. (3)-(9) until the final iteration. Upon
completion of the algorithm execution, WaOA introduces the best candidate solution found during execution
as the solution to the given problem. The WaOA implementation flowchart is presented in Fig. 2, and its pseu-
docode is specified in Algorithm 1.

v

‘ Input all information of optimization problem. ‘

!

‘ Set number of walruses N and the total number of iterations 7T'. ‘

!

’ Create initial population. Seti =1 and t = 1. ‘

!

’ Calculate objective function. ‘

Phasel: Calculate X, fl function using Eq. (3).

12
’ Phase 1: Update X; using Eq. (4). ‘
v

Phase 2: Select Xx randomly as the migration destination for X; using Eq. (5).

1
1
]
1
1
1
1
1
1
1
]
v I

. . 1

’ Phase 2: Calculate X fz function using Eq. (5). ‘ 1
1

* 1
1

1

1

1

1

]

]

1

1

]

1

1

’ Phase 2: Update X; using Eq. (6). ‘
v

Phase 3: Calculate X f3 function using Egs. (7) and (8).
v
Phase 3: Update X; using Eq. (9).

Yes
= i=i+1 [EEN—
4 No

’ Save the best candidate solution so far. ‘

Yes t=t+1

4 No
Output the best quasi-optimal solution of the objective function found by WaOA.

End WaOA.

Figure 2. Flowchart of WaOA.
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Algorithm 1. Pseudocode of WaOA

Start WaOA.

1. Input all optimization problem information.

2. Set the number of walruses (N) and the total number of iterations (7).

3. Initialization process of walruses’ locations.

4. Fort=1T

5. Update strongest walrus based on objective function value criterion.
6. Fori=1:N

7. Phasel: Feeding strategy (exploration)

8

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

Calculate new location of the jth walrus using (3).
Update the ith walrus location using (4).

Phase 2: Migration
Choose an immigration destination for the ith walrus.

Calculate new location of the jth walrus using (5).
Update the ith walrus location using (6).

Phase 3: Escaping and fighting against predators (exploitation)
Calculate a new position in the neighborhood of the ith walrus using (7) and (8)
Update the ith walrus location using (9).

end

Save the best candidate solution so far.

end
Output the best quasi-optimal solution obtained by WaOA for given problem.

End WaOA.

Computational complexity of WaOA. In this subsection, the computational complexity of WaOA is
investigated. WaOA initialization, involving the formation of the population matrix and the calculation of the
objective function, has the complexity equal to O(Nm), where N is the number of walruses and m is the number
of problem variables. The WaOA update process has three different phases, each of which has a complexity equal
to O(NmT), where T is the number of iterations of the algorithm. Thus, the total computational complexity of
WaOA is equal to O(Nm(1 + 3T)).

Regarding competitor algorithms, GA, PSO, GSA, GWO, MVO, MPA, TSA, RSA, and WSO have a time
complexity equal to O(Nm(1 + T)), and TLBO has a computational complexity equal to to O(Nm(1 + 2T)).
Therefore, it is clear that the proposed WaOA approach has higher computational complexity than all algorithms
used for comparison. However, to make a fair comparison, we used the population size of each metaheuristic
algorithm in the simulation analysis so that the total number of function evaluations is the same for all employed
algorithms.

Simulation studies and results

In this section, WaOA simulation studies on optimization applications are presented. The efficiency of WaOA in
providing the optimal solution has been tested on sixty-eight standard objective functions, including unimodal,
high-dimensional multimodal, fixed-dimensional multimodal, the CEC 2015 test suite, and the CEC 2017 test
suite. The information on these test functions is specified in the Appendix and Tables A1 to A5.

The reasons for choosing these benchmark functions are as follows. Unimodal functions F1 to F7 are suitable
for evaluating the exploitation ability of metaheuristic algorithms in convergence towards the global optimal
as they do not have a local optimum. Multimodal functions F8 to F23 are suitable options for evaluating the
exploration ability of metaheuristic algorithms due to having multiple local optimal. The CEC 2015 and the CEC
2017 test suites have complex benchmark functions that are suitable for evaluating the ability of metaheuristic
algorithms to balance exploration and exploitation during the search process. WaOA performance is compared
with ten well-known GA, PSO, GSA, TLBO, GWO, MVO, MPA, TSA, RSA, and WSO algorithms to determine
the quality of WaOA results. The values set for the control parameters of the employed algorithms are specified
in Table 1. The WaOA and mentioned competitor algorithms had been implemented on F1 to F23, each in twenty
independent runs containing a thousand iterations (i.e., T = 1000). In this study, parameter N is considered
equal to 20 for WaOA, 30 for TLBO, and 60 for other competitor algorithms to equalize the number of function
evaluations. In this case, considering the computational complexity of each algorithm, the number of function
evaluations for each metaheuristic algorithm is equal to 60,000.

Optimization results are reported using four statistical indicators: mean, best, standard deviation, and median.
In addition, each algorithm’s rank in handling each objective function is determined based on the average
criterion.

Evaluation unimodal objective function. Unimodal objective functions have been selected to evaluate
the WaOA exploitation ability in local search due to having only one main optimal solution and thus lacking
local solutions. The results of optimizing the F1 to F7 functions using WaOA and competitor algorithms are
released in Table 2. The simulation results show that WaOA has made the optimal global solution available for
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Algorithm | Parameter Value
Wso F,,and F, 0.07,0.75
T, 4, a, 4 4.125, 6.25, 100, 0.0005
Sensitive parameter B =0.01
RSA Sensitive parameter a=0.1
Evolutionary sense (ES) ES: randomly decreasing values between 2 and -2
Constant number P=05
MPA Random vector R s a vector of uniform random numbers from [0, 1]
Fish aggregating devices (FADs) FADs =0.2
Binary vector U=0orl
TSA P,nand P .. 1,4
€1 Cy C3 random numbers lie in the range [0, 1]
MVO wormhole existence probability (WEP) Min(WEP)=0.2 and Max(WEP) =1
Exploitation accuracy over the iterations (p) | p =6
GWO Convergence parameter (a) a: Linear reduction from 2 to 0
TLBO Tr: teaching factor Tr = round[(1 + rand)]
random number rand is a random number from [0, 1]
GSA Alpha, Gy, Rogrms Rporer 20,100, 2, 1
Topology Fully connected
PSO Cognitive and social constant (cpc) =(2,2)
Inertia weight Linear reduction from 0.9 to 0.1
Velocity limit 10% of dimension range
Type Real coded
GA Selection Roulette wheel (Proportionate)
Crossover Whole arithmetic (Probability = 0.8, « € [—0.5,1.5])
Mutation Gaussian (Probability = 0.05)

Table 1. Parameter values for the competitor algorithms.

the F1, F3, F5, and F6 objective functions. WaOA is also the best optimizer for optimizing F2, F4, and F7. A
comparison of optimization results shows that WaOA has a very competitive and obvious superiority over the
ten compared algorithms.

Evaluation high-dimensional multimodal objective functions. High dimensional multimodal
functions with several local and globally optimal solutions have been selected to evaluate WaOA exploration
capability in global search. The optimization results of F8 to F13 functions using WaOA and competitor algo-
rithms are reported in Table 3. What can be deduced from the results of this table is that WaOA has converged
to the global optimal in optimizing F9 and F11. WaOA is also the best optimizer for optimizing F10, F12, and
F13. TSA is the best optimizer for the F8 objective function, while WaOA is the second-best optimizer for this
objective function. Analysis of the simulation results shows that WaOA has an acceptable performance in opti-
mizing high-dimensional multimodal objective functions and has provided a superior outcome compared to ten
competitor algorithms.

Evaluation fixed-dimensional multimodal objective function. The fixed-dimensional multimodal
functions, which have fewer local solutions than functions F8 to F13, have been selected to evaluate WaOA’s
ability to balance exploration and exploitation. The optimization results of F14 to F23 functions are reported in
Table 4. The results show that WaOA ranks first as the best optimizer in handling all F14 to F23 functions. Fur-
thermore, analysis of the simulation results shows the superiority of WaOA over ten compared algorithms due
to the high power of WaOA in balancing exploration and exploitation.

The performances of WaOA and competitor algorithms in solving F1 to F23 functions are presented as boxplot
diagrams in Fig. 3. Intuitive analysis of these boxplots shows that the proposed WaOA approach has provided
superior and more effective performance than competitor algorithms by providing better results in statistical
indicators in most of the benchmark functions.

Statistical analysis. In this subsection, the superiority of WaOA over competitor algorithms is statisti-
cally analyzed to determine whether this superiority is significant or not. To perform statistical analysis on the
obtained results, Wilcoxon signed-rank test* is utilized. Wilcoxon signed-rank test is a non-parametric test that
is used to detect significant differences between two data samples. The results of statistical analysis using this test
are presented in Table 5. What can be seen from the study of the simulation results is that WaOA has a significant
statistical superiority over the competitor algorithm in cases where the p-value is less than 0.05.
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\ GA \ PSO \ GSA \ TLBO GWO MVO TSA MPA RSA WSO WaOA
F,
Avg 35.636479 0.2070031 1.07E-16 1.65E-74 5.55E-59 0.1484659 2.80E-50 5.38E—48 2.361E-74 139.30155 0
std 15366825 | 0.8680742 | 521E-17 | 4.00E-74 | 8.50E-59 | 0.0286353 | 4.26E-50 | 9.65E-48 | 1.056E-73 | 159.25892 |0
Bsf 15574823 | 9.38E-05  |4.92E-17 | 1.87E-76 | 2.00E—61 | 0.0877539 | 120E-52 |2.42E-50 | 6.72E-275 |24516281 |0
Med 32.554042 0.0035476 9.50E-17 2.54E-75 1.52E-59 0.1522978 1.03E-50 1.43E-48 7.55E-150 63.741662 0
Rank 10 9 7 2 4 8 5 6 3 11 1
F,
Avg 29137603 | 1.083336 542E-08 | 7.38E-39 | 9.23E-35 | 0.2630586 |4.05E-28 | 1.53E-28 | 1.545E-57 | 1.378263 1.02E-294
Std 04876288 | 09126523 | 9.52E-09 | 6.86E-39 | 8.85E-35 | 0.0465101 | 5.46E-28 | 2.55E-28 | 6.908E-57 | 0.670443 0
Bsf 1.8464391 | 0.213643 410E-08 | 7.03E-40 | 1.07E-35 | 0.1766104 |346E-30 | 2.84E-31 | 6.05E-302 | 0.5153244 | 1.93E-301
Med 28264357 | 07554828 | 5.44E-08 | 4.86E-39 | 6.07E-35 | 02675488 | 161E-28 | 3.04E-29 | 1.62E-171 |1.1488451 | 1.04E-296
Rank 11 9 7 3 4 8 6 5 2 10 1
F3
Avg 22803282 | 81043051 | 429.96791 | 1.92E-25 | 7.28E-15 | 14.567466 | 2.04E-12 | 8.18E-10  |21.200999 | 1736.8697 |0
std 537.7821 14855826 | 14379514 | 2.64E-25 | 278E-14 | 7.4619678 |545E-12 |3.57E-09 | 94.81375 88482296 |0
Bsf 1580.7695 | 28.031944 | 134.69855 | 1.95E-28 | 4.91E-20  |3.8558441 | 141E-21 |3.67E-19 | 1.66E-286 |456.77681 |0
Med 21857918 | 31151047 | 404.69921 |8.93E-26 | 8.80E-17 |13.32036 | 121E-13 |262E-14 |519E-159 | 14055958 |0
Rank 11 9 8 2 3 6 4 5 7 10 1
E,
Avg 31939824 | 6.0450436 | 1.2460337 | 2.88E-30 | 1.I6E-14 | 05305654 | 222E-19 | 0.0128207 | 6.3E-86 17.636532 | 2.12E-277
std 06363611 | 21930237 | 1.20872 558E-30 | 1.63E-14 | 0.2165466 | 1.90E-19 | 0.0236447 | 2.817E-85 |3.8176138 |0
Bsf 2.1069528 2.8440653 1.17E-08 3.06E-31 422E-16 0.1732463 1.07E-20 1.28E-05 1.46E-292 10.597995 2.33E-283
Med 31281948 | 55628555 | 0.8672083 | 1.01E-30 | 4.90E-15 | 05082758 | 1.74E-19 | 0.0014648 | 2.48E-179 | 17.27578 421E-280
Rank 9 10 8 3 5 7 4 6 2 11 1
Fs
Avg 44741975 | 9081.0534 | 26444544 | 26.879052 | 26.647637 |210.87972 | 23770128 | 28.627328 | 11.588225 | 8219.6542 |0
std 12852693 | 27,683.869 | 1.2663773 | 0.9415733 | 0.6191676 | 604.31395 | 0.6101773 | 0.4200296 | 14.561344 | 15,186.046 |0
Bsf 26632221 | 25.105404 | 23.188877 | 25707118 | 26.032245 |27.165606 | 23.003447 | 27.953193 | 1.673E-28 |804.09074 |0
Med 446.1339 84.612956 26.332793 26.414859 26.247344 29.66712 23.695067 28.82189 1.935E-26 2420.2388 0
Rank 9 11 4 6 5 8 3 7 2 10 1
Fg
Avg 31.42673 0.0510473 9.32E-17 1.1573232 0.6692467 0.1400393 1.61E-09 3.9030313 6.3563416 78.328797 0
Std 10245634 | 0.1096987 | 3.76E-17 | 0.308507 | 0.3126824 | 0.0321654 | 6.46E-10 | 0.652961 13479915 | 64.058682 | 0
Bsf 12842622 | 0.0001209 | 4.17B-17 | 0.5427727 | 02497602 | 0.0819428 | 8.09E-10 | 3.0609791 |3.0286991 |23315452 |0
Med 31320071 | 0.0086778 | 8.77E-17 | 1.1353832 | 07321052 |0.1430209 | 1.37E-09 | 3.8124693 |7.0490774 | 50.668202 |0
Rank 10 4 2 7 6 5 3 8 9 11 1
F;
Avg 0.0092806 | 0.1547606 | 0.0469892 | 0.0018942 | 0.0008859 | 0.0115807 | 0.0006818 | 0.0037947 | 7.607E-05 | 5.67E05 1.43E-05
Std 0.0032501 0.0722997 0.0156823 0.0017094 0.0004986 0.0048849 0.0004792 0.0018803 5.737E-05 5.778E-05 1.15E-05
Bsf 0.0033147 | 00767143 | 0.0226519 | 0.000295 | 0.0003704 | 0.0048829 | 9.71E-05 | 0.0011774 | 1.747E—06 | 3.918E-07 | 3.75E-07
Med 0.0090163 | 0.1167272 | 0.0442485 | 0.0013531 | 0.0006481 | 0.0114417 | 0.000617 | 0.0035579 | 6.982E-05 | 3.295E-05 | 1.20E-05
Rank 8 11 10 6 5 9 4 7 3 2 1
Sum rank 68 63 46 29 32 51 29 44 28 65 7
Meanrank | 9.714286 |9 6571429 | 4.142857 | 4571429 | 7.285714 | 4.142857 | 6285714 |4 9.285714 1
Total rank 10 8 6 3 4 7 3 5 2 9 1

Table 2. Results of optimization of WaOA and competitor metaheuristics on unimodal functions.

Sensitivity analysis.
repetitive-based calculation. Accordingly, the parameters N (the number of members of the population) and T
(the total number of iterations of the algorithm) are expected to affect the WaOA optimization performance.
Therefore, WaOA sensitivity analysis to parameters T and N is presented in this subsection.

For analyzing the sensitivity of WaOA to the parameter N, the proposed algorithm for different values of the
parameter N equal to 20, 30, 50, and 100 is used to optimize the functions of F1 to F23. Optimization results
are given in Table 6, and WaOA's convergence curves under this analysis are presented in Fig. 4. What is evident
from the analysis of WaOA's sensitivity to the parameter N is that increasing the searcher agents improves WaOA’s
search capability in scanning the search space, which enhances the performance of the proposed algorithm and
reduces the values of the objective function.

WaOA is a population-based optimizer that performs the optimization process in a
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GA \ PSO \ GSA \ TLBO GWO MVO TSA MPA RSA WSO WaOA
Fy
Avg —8732.0566 | — 6655.931 —2500.7139 | —5231.075 —6083.0982 | —7816.9559 | —9767.2623 | — 6168.7082 | — 5406.0627 | —7093.1044 | — 8881.1061
Std 50935054 | 796.53218 | 39355973 | 587.7787 10451408 | 65141296 | 47549897 | 49270948 | 338.83459 | 1097.2857 | 152.94837
Bsf — 96533571 | —7989.6611 | — 3246.4966 | — 6299.8836 | — 7654.2152 | —9073.2252 | — 10,689.627 | — 7227.6685 | — 56554772 | — 97904976 | — 9075.5449
Med — 87684313 | - 6498.1012 | — 2466.9839 | — 51344807 | — 6019.692 | —7735.8964 | — 97584183 |- 6271.1354 | — 5493351 |- 7050.2823 |- 8917.6187
Rank 3 6 11 10 8 4 1 7 9 5 2
Fy
Avg 57.122334 | 62018927 | 25.868921 |0 01072815 | 95254712 |0 166.51009 | 0 27.043749 |0
std 15547508 | 14.674411 | 6.6313076 | 0 04797776 | 24.107803 | 0 41.096443 |0 61049913 |0
Bsf 34508517 | 44773094 | 9.9495906 | 0 0 43910246 |0 91.619574 |0 15.188582 | 0
Med 54083175 | 56224581 | 26.863884 |0 0 91.11852 |0 17111072 |0 26372688 |0
Rank 5 6 3 1 2 7 1 8 1 4 1
Fio
Avg 35854087 | 3.2364098 | 830E-09 | 4.09E-15 | 1L67E-14 | 05370924 |391E-15 | 17230212 |8.882E-16 |4.7802266 | 2.13E—15
Std 04151563 | 0.8973082 | 1.60E-09 | 1.09E-15 | 3.15B-15 | 0.6513908 |130E-15 | 1.6183189 |0 0.8814042 | 1.74E~15
Bsf 2.856219 17750878 | 5.13E-09 | 8.88E-16 | 1.15E-14 | 0.0918005 |8.88E-16 | 1.51E-14 8.882E-16 | 2.8691584 | 8.88E-16
Med 35140585 | 3.1264706 | 8.16E-09 | 444E-15 | 1.51E-14 | 0.1269169 |4.44E-15 | 27111539 |8.882E-16 |4.8412315 | 8.88E-16
Rank 10 9 6 4 5 7 3 8 1 11 2
Fn
Avg 15658187 | 0.0989545 | 8.7022139 |0 0.0032973 | 04116334 |0 0.0065336 | 0 20387294 |0
std 01869219 | 0.1284744 | 4.6881208 |0 00062632 | 0.1070168 | 0 0.0063468 | 0 17243749 | 0
Bsf 1.2168372 0.0001701 2.7594413 0 0 0.2741324 0 0 0 1.107167 0
Med 15528338 | 0.0628106 | 8.2290232 |0 0 03958958 | 0 0.0088858 | 0 15129228 |0
Rank 6 4 8 1 2 5 1 3 1 7 1
Fi
Avg 0.154488 1.5947308 | 0.3648692 | 0.0821009 | 0.0413696 | 1.460569 1.82E-10 | 7.0583987 | 13120904 |2.8972544 | 1.57E-32
Std 0.1110493 | 13141826 | 05614192 | 0.0268307 | 0.0193412 | 1458994 | 9.87E-11 | 3.6829525 |0.3309185 | 12781011 | 2.81E—48
Bsf 0.0487615 | 0.0004665 |3.54E-19 | 0.0454024 | 00134185 | 0.0019963 |4.63E-11 | 05684754 | 0.6975687 | 0.6649101 | 1.57E-32
Med 0.1255449 1.4939335 0.132149 0.0812882 0.0370402 1.0833741 1.53E-10 6.8697136 1.5217562 2.8024353 1.57E-32
Rank 5 9 6 4 3 8 2 11 7 10 1
Fis
Avg 2.2803846 5.1857653 0.2491467 1.0496147 0.5714104 0.0242273 0.0013037 2.8069554 5.442E-22 8081.2485 1.35E-32
Std 09391074 | 4.2390635 | 0.7537801 | 0.2541193 | 02372261 | 0.0208494 | 0.0038377 | 05753073 | 2.344E-21 |23,135.549 | 2.81E-48
Bsf 09745414 | 02328254 | 5.86E-18 | 0.5896332 | 0.1002619 | 0.00478 6.66E-10 | 13560246 | 1.059E-31 | 13.356494 | 1.35E-32
Med 20472332 | 47415948 | 119E-17 | 1.0475961 | 0.6576587 | 0.0175472 |3.03E-09 | 2.8573762 |7.794E-31 | 38.79782 1.35E-32
Rank 8 10 5 7 6 4 3 9 2 11 1
Sumrank |37 44 39 27 26 35 11 46 21 48 8
Mean rank | 6.16667 7.33333 6.5 45 433333 5.83333 1.83333 7.66667 35 8 1.33333
Total rank 7 9 8 5 4 6 2 10 3 11 1

Table 3. Results of optimization of WaOA and competitor metaheuristics on the high-dimensional
multimodal functions.

For analyzing the sensitivity of the proposed algorithm to the parameter T, WaOA for different values of
the parameter T equal to 200, 500, 800, and 1000 is used to optimize the functions of F1 to F23. Optimization
results are in Table 7, and the WaOA's convergence curves under this analysis are presented in Fig. 5. Based on
the obtained results, it is found that increasing values of T gives the algorithm more opportunity to converge to
better solutions based on exploitation ability. Therefore, it can be seen that with increasing values of T, the opti-
mization process has become more efficient, and as a result, the values of the objective function have decreased.

Evaluation of the CEC 2015 test suite. The optimization results of the CEC 2015 test suite, including
C15-F1 to C15-F15 using WaOA and competitor algorithms, are released in Table 8. The simulation results
show that WaOA is the best optimizer for C15-F1 to C15-F8, C15-F10, C15-F13, and C15-F14 functions. In
addition, in solving C15-F9 after MVO, in C15-F11 after WSO, C15-F12, and C15-F15 after GSA, the proposed
WaOA is the second-best optimizer. Analysis of simulation results shows that WaOA provides better results in
most functions of the CEC 2015 test suite, and in total, with the first rank of the best optimizer in handling the
CEC 2015 test suite, has provided superior performance compared to competitor algorithms.
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GA \ PSO \ GSA \ TLBO GWO MVO TSA MPA RSA WSO WaOA

Fiy
Avg 0.9981643 2.5666387 3.5074504 1.2956191 45112709 0.9980038 0.9980038 9.8626047 3.4763804 1.0972089 0.9980038
std 0.0004209 | 3.1924333 | 22232827 | 0.7268706 | 49191731 | 584E-12 | 7.20E-17 | 44088461 |2.5684321 | 0.4436585 | 1.02E-16
Bsf 09980038 | 0.9980038 | 0.9980038 | 0.9980038 | 0.9980038 | 0.9980038 | 0.9980038 | 0.9980038 | 1.0478432 | 0.9980038 | 0.9980038
Med 0.998005 19920309 | 24246779 | 0.9980039 | 0.9980038 | 0.9980038 | 0.9980038 | 10763181 |2.9821052 | 0.9980038 | 0.9980038
Rank 3 6 8 5 9 2 1 10 7 4 1
Fis
Avg 0.0088845 | 0.0025359 | 0.0038451 | 0.0014762 | 0.0053342 | 0.0046946 | 0.0003075 | 0.006305 0001262 | 0.0013103 | 0.0003075
std 0.0086194 | 0.0061158 | 0.0030393 | 0.0044582 | 0.0089026 | 0.0080421 | 3.92E-19 | 0.0138809 | 0.0005632 | 0.0044846 | 9.87E—20
Bsf 0.0008345 | 0.0003075 | 0.0013735 | 0.0003122 | 0.0003075 | 0.0003268 | 0.0003075 | 0.0003076 | 0.0006652 | 0.0003075 | 0.0003075
Med 0.0051832 | 0.0003075 | 0.002212 | 0.0003187 | 0.0003079 | 0.0007413 | 0.0003075 | 0.0004825 | 0.0011743 | 0.0003075 | 0.0003075
Rank 11 6 7 5 9 8 2 10 3 4 1
Fis
Avg ~1.0316252 | - 1.0316285 | - 1.0316285 | — 10316268 | — 1.0316284 | — 1.0316284 | — 1.0316285 | — 1.0284655 | — 1.0295585 | — 1.0316284 | — 1.0316285
std 920E-06 | 1.61E-16 |1.02B-16 |146E-06 |4.11E-09 | 4.04E-08 |2.10E-16 | 0.0097351 | 0.0069817 |3273E-08 |2.28E-16
Bsf ~1.0316285 | — 1.0316285 | - 1.0316285 | — 1.0316284 | — 1.0316285 | — 1.0316285 | — 1.0316285 | — 1.0316284 |- 1.0316235 | — 1.0316285 | — 1.0316285
Med ~1.0316282 | — 1.0316285 | — 1.0316285 | — 1.0316273 | — 1.0316284 | — 1.0316284 | — 1.0316285 | — 1.0316283 | — 1.0312763 | — 1.0316285 | — 1.0316285
Rank 6 1 1 5 2 4 1 8 7 3 1
Fy;
Avg 03980165 | 0.6018112 | 03978874 | 0.3980571 | 0.3979973 | 0.3978874 | 0.3978874 | 03979132 | 0.4116021 | 03978874 | 0.3978874
std 0.0003531 | 0.5653864 | 0 0.0002036 | 0.0004897 | 1.30E-07 |0 352E-05 | 0.0206876 |0 0
Bsf 0.3978874 0.3978874 0.3978874 0.3978876 0.3978874 0.3978874 0.3978874 0.3978879 0.3979635 0.3978874 0.3978874
Med 03978938 | 0.3978874 | 0.3978874 | 0.3980127 | 0.3978875 | 0.3978874 | 0.3978874 | 0.3979045 | 0.4031937 | 03978874 | 0.3978874
Rank 5 8 1 6 4 2 1 3 7 1 1
Fig
Avg 3.0098143 |3 3 3.0000008 | 3.0000125 | 3.0000004 |3 8.8017182 | 7.5115846 |3 3
std 00243289 | 2.87E-15 | 3.44E-15 | 1.14E-06 | 128E-05 |331E-07 | 123E-15 | 20497606 |11.136857 |3.529E-16 |5.76E~16
Bsf 3.0000007 |3 3 3 30000001 |3 3 3.0000003 | 3.0000033 |3 3
Med 3.0001376 3 3 3.0000007 3.0000086 3.0000003 3 3.0000084 3.0001994 3 3
Rank 8 3 4 6 7 5 2 10 9 1 1
Fio
Avg —3.8626818 | —3.8241312 | —3.8627821 | —3.8617086 | —3.8612086 | — 3.862782 —3.8627821 | —3.8627425 | —3.8195154 | —3.8627821 | —3.8627821
std 0.0002087 | 0.1728521 | 1.97E-15 | 0.0023471 | 0.0028936 | 1.67E-07 | 2.28E-15 | 260E-05 | 0.0360682 | 2.278E—-15 | 2.28E~15
Bsf —3.8627821 | —3.8627821 | —3.8627821 |- 3.862751 | -3.8627816 |- 3.8627821 | —3.8627821 |- 3.862781 |-—3.8621529 | —3.8627821 |- 3.8627821
Med ~3.8627639 | - 3.8627821 | - 3.8627821 | — 3.8625048 | — 3.8627639 | — 3.8627821 |- 3.8627821 | — 3.8627476 | —3.825845 | - 3.8627821 |- 3.8627821
Rank 4 7 1 5 6 2 1 3 8 1 1
Fy
Avg ~ 32074926 | - 3.2857259 | - 33219952 | - 3.2448865 | -3.26319 ~ 32564435 | - 33219952 | - 32610207 | —2.5357686 | — 33160412 | — 3.3219952
Std 0.1330767 0.0665186 3.81E-16 0.0681168 0.0698817 0.0608337 4.44E-16 0.08834 0.4743104 0.0265835 4.44E-16
Bsf ~33201329 | —3.3219952 | - 3.3219952 | — 3.3165345 | — 3.3219943 | — 3321995 | —3.3219952 | — 33216262 | —3.0036949 | — 33219952 | — 3.3219952
Med ~32347512 | —3.3219952 | - 3.3219952 | — 32495147 | —3.321992 |- 32030757 | —3.3219952 | — 33201103 |—2.7683014 | — 33219952 | — 3.3219952
Rank 8 3 1 7 4 6 1 5 9 2 1
Fy
Avg —5.1961582 | —4.5268585 | — 6.3750274 | —6.231103 | -9.900112 |-7.6132836 | —10.1532 | — 74645915 | — 5055196 | —8.4065104 |- 10.1532
std 25341696 | 3.0135558 | 3.5951183 | 19403488 | 1.1297318 | 2.6059 208E-15  |3.1774824 |2788E-07 |3.1433508 | 3.21E-15
Bsf —9.8099505 | —10.1532 —10.1532 -9.2118711 |-10.153084 | —10.153189 | —10.1532 —10.099531 | -5.0551966 | —10.1532 —10.1532
Med — 52428461 | — 2.6828604 | — 5.3837395 | —6.902018 | — 10.152715 | - 7.6269292 | — 10.1532 | —9.8476972 | —5.0551959 | —10.1532 |- 10.1532
Rank 8 10 6 7 2 4 1 5 9 3 1
Fp»
Avg —5.8434567 | — 64347072 | - 10.402941 | —7.3995435 | — 10.402536 | —9.605593 | — 10.402941 | —4.6611193 | —5.0876679 | —9.3525262 | — 10.402941
std 27273583 | 3.7465155 | 4.08E-15 | 2.1676383 | 0.0001684 | 1.947217 | 3.65E-15 | 3.2949226 |9.805E-07 | 25719025 | 3.05E-15
Bsf ~10.345307 | - 10402941 | — 10402941 | —10.0663 | — 10.402846 | — 10.402934 | — 10.402941 | — 10.354892 | — 5.0876699 | — 10.402941 | — 10.402941
Med ~5.1988266 | — 5.1082473 | — 10.402941 | —7.8935553 | — 10.402537 | — 10.402859 | — 10.402941 | — 27559742 | — 5.0876678 | — 10.402941 | — 10.402941
Rank 7 6 1 5 2 3 1 9 8 4 1
Fas
Avg —7.3214569 | —7.1817094 | —10.53641 —8.0026439 | —10.535988 | —9.1867389 | —10.53641 —6.9534073 | —5.1284729 | —8.7165214 | —10.53641
Continued

Scientific Reports|  (2023) 13:8775 | https://doi.org/10.1038/s41598-023-35863-5 nature portfolio




www.nature.com/scientificreports/

GA PSO GSA TLBO GWO MVO TSA MPA RSA WSO WaOA
Std 2.583081 3.8817584 1.68E-15 2.127303 0.0002421 2.3983439 2.51E-15 3.6225412 1.283E-06 3.2430933 1.82E-15
Bsf —10.20802 —10.53641 —10.53641 —10.444176 | —10.536352 | —10.536387 | —10.53641 —10.422351 | —5.128476 —10.53641 —10.53641
Med —8.5115441 | —10.53641 —10.53641 —8.8302784 | —10.536025 | —10.536346 | —10.53641 —7.7068006 | —5.1284726 | —10.53641 —10.53641
Rank 7 8 2 6 3 4 2 9 10 5 1
Sum rank 67 58 32 57 48 40 13 72 77 28 10
Meanrank | 6.7 5.8 3.2 5.7 4.8 4 1.3 7.2 7.7 2.8 1
Total rank 9 8 4 7 6 5 2 10 11 3 1

Table 4. Results of optimization of the WaOA and competitor metaheuristics on fixed-dimensional
multimodal functions.

Evaluation of the CEC 2017 test suite. The employment results of WaOA and competitor algorithms on
the CEC 2017 test suite including functions C17-F1 to C17-F30 are presented in Table 9. What can be seen from
the analysis of the simulation results is that WaOA is the first best optimizer for C17-F1 to C17-F6, C17-F8 to
C17-F30 functions. in solving C17-F7, proposed WaOA after GSA is the second-best optimizer. Comparison of
simulation results shows that WaOA has provided better results in most functions of CEC 2017 test suite, and has
provided superior performance in solving this test suite compared to competing algorithms.

Informed consent. Informed consent was not required as no human or animals were involved.

Ethical approval. This article does not contain any studies with human participants or animals performed
by any of the authors.

WaOA's application to real-world problems

Metaheuristic algorithms are one of the most widely used techniques in dealing with real-world applications. This
section tests WaOA performance in optimizing four engineering design challenges and twenty-two constrained
optimization problems from the CEC 2011 test suite. It should be noted that to model the constraints of opti-
mization problems, the penalty function has been used. Thus, if a solution does not meet any of the constraints
of the problem, a penalty coefficient is added to the value of its objective function corresponding to each non-
compliance of the constraint, and as a result, it is known as an inappropriate solution.

tension/compression spring design optimization problem. Tension/compression spring design is
a challenge in real-world applications with the aim of minimizing the weight of tension/compression spring. A
schematic of this design is shown in Fig. 6%. The tension/compression spring problem formulation is as follows:
Consider X = [x1,x2,x3] = [d, D, P].
Minimize f(X) = (x3 + 2)x2x]2.

Subject to:

3 2
X5X3 4x5 — x1% 1
X)=1-—22_<0, p(X) = + —1<0,
£ 71785x% £ 12566(xpx3) | 5108x2
140.45x,; X1+ x2
g3(X)=1—27§0,g4(X)=7—1§0.
X5X3 1.5
With.

0.05 < x; <2,0.25 < x, < 1.3and2 < x3 < 15.

The results of using WaOA and competing algorithms in optimizing the Tension/compression spring design
variables are presented in Table 10. The simulation results show that WaOA has provided the optimal solution
to this problem with the values of the variables equal to (0.0519693, 0.363467, 10.9084) and the corresponding
objective function value equal to 0.012672. The statistical results obtained from the performance of WaOA and
competitor algorithms are reported in Table 11, which shows the superiority of WaOA in providing better values
for statistical indicators. The WaOA convergence curve while achieving the solution for tension/compression
spring is shown in Fig. 7.

Welded beam design. Welded beam design is a real global challenge in engineering sciences whose main
goal in design is to reduce the fabrication cost of the welded beam. A schematic of this design is shown in Fig. 8.
The formulation of welded beam design problem is as follows:

Consider X = [x1,x2, x3,x4] = [h, L, t, D).

Minimize f(X) = 1.1047 lx%xz + 0.04811x3x4(14.0 + xp).

Subject to:

g1(X) = 1(X) — 13600 < 0, g,(X) = o(X) — 30000 < 0,
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algorithm

$BX)=x1 —x4 <0, &4(X) = 0.10471x% + 0.04811x3x4(14 + x;) — 5.0 < 0,
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g5(X) = 0.125 — x; <0, g6(X) = 8(X) — 0.25 < 0, g7(X) = 6000 — p.(X) < 0.

algorithm
Figure 3. The boxplot diagram of WaOA and competitor algorithms performances on functions F1 to F23.
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Functions type
Compared algorithms | Unimodal | High-multimodal | Fixed-multimodal
WaOA vs. WSO 1.01E-24 6.25E-18 1.44E-34
‘WaOA vs. RSA 1.01E-24 2.29E-12 2.09E-26
WaOA vs. MPA 1.01E-24 5.98E-20 1.44E-34
WaOA vs. TSA 1.01E-24 0.044967 1.13E-05
WaOA vs. MVO 1.01E-24 3.17E-18 1.44E-34
WaOA vs. GWO 1.01E-24 1.17E-16 1.44E-34
WaOA vs. TLBO 1.01E-24 2.37E-13 1.44E-34
WaOA vs. GSA 1.01E-24 1.97E-21 3.22E-13
WaOA vs. PSO 1.01E-24 1.97E-21 5.35E-17
WaOA vs. GA 1.01E-24 1.49E-11 1.44E-34
Table 5. Results of Wilcoxon signed-rank test.
Number of population members

Objective function | 20 30 50 100

F, 0 0 0 0

F, 1.3E-287 | 1.9E-291 | 1.02E-294 | 3.6E-301
F, 0 0 0 0

F, 3.6E-268 |2.5E-272 |2.12E-277 | 1.1E-286
Fs 0 0 0 0

F¢ 0 0 0.00E+00 0

F; 1.42E-05 | 1.65E-05 | 1.43E-05 6.27E-06
Fq —8217.03 | -8671.19 | —8881.11 —8955.43
F, 0 0 0.00E+00 0

Fio 2.13E-15 | 3.38E-15 | 2.13E-15 2.13E-15
F,, 0 0 0.00E+00 |0

F, 1.57E-32 | 1.57E-32 | 1.57E-32 1.57E-32
Fj5 1.35E-32 | 1.35E-32 | 1.35E-32 1.35E-32
Fy, 0.998004 | 0.998004 | 0.998004 0.998004
Fis 0.000359 0.000359 0.000307 0.000307
Fis -1.03163 | -1.03163 |-1.03163 |-1.03163
Fy; 0.397887 | 0.397887 | 0.397887 0.397887
Fiq 3 3 3 3

Fio —3.86278 | -3.86278 | —3.86278 |- 3.86278
Fy —3.29822 | —3.30444 | -3.322 —3.27444
Fy, - 8.6238 —-10.1532 | -10.1532 | -10.1532
Fy, -9.60565 | -10.1372 | —10.4029 | -10.4029
Fy; - 10.266 —10.5364 | -10.5364 |- 10.5364

Table 6. Results of WaOA sensitivity analysis to the parameter N.

T(X) = \/(T,)z + (Ztr/);—; + (1'")2, T =

o(X) =

504,000

413

T S(x) =

/ 6000

\/Exlxz’

2\5361)(2

65,856,000

(30 - 10%)x4x3
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Figure 4. WaOA’s convergence curves in the study of sensitivity analysis to the parameter N.
4.013(30 - 10%)x3x3 x3 | 30-10°
peX) = - 2 [
3.196 28\ 412 109)
With
0.1 <x1,x4 <2and0.1 < x,,x3 < 10.

WaOA and competing algorithms are implemented on the welded beam design problem, and the results are
presented in Table 12. Based on these results, WaOA has provided the optimal solution to this problem with
the values of the variables equal to (0.20573, 3.470489, 9.036624, 0.20573) and the corresponding objective
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Maximum number of iterations
Objective function | 200 500 800 1000
F, 14E-112 | 9.5E-287 |0 0
F, 1.85E-57 | 6.7E-147 | 3.4E-236 | 1.02E-294
F; 6.04E-83 | 1.9E-217 |0 0
F, 5.11E-54 |2.7E-138 | 1.5E-222 |2.12E-277
F, 0 0 0 0
F¢ 8.52E-05 |0 0 0.00E+00
F, 7.89E-05 | 1.83E-05 | 2.1E-05 1.43E-05
Fg —8822.99 | —8449.52 | —8792.24 | -8881.11
F, 0 0 0 0.00E+00
Fy 2.84E-15 1.42E-15 | 2.31E-15 | 2.13E-15
Fy, 0 0 0 0.00E+00
F, 1.57E-32 | 1.57E-32 | 1.57E-32 | 1.57E-32
Fi3 1.35E-32 | 1.35E-32 | 1.35E-32 | 1.35E-32
Fiy 0.998004 | 0.998004 0.998004 0.998004
Fis 0.000313 0.000307 0.000353 0.000307
Fis -1.03163 | -1.03163 | -1.03163 |- 1.03163
F; 0.397887 | 0.397887 0.397887 0.397887
Fis 3 3 3 3
Fy —3.86278 | —3.86278 | —3.86278 | —3.86278
F,, —3.27444 | -3.27444 | -3.29227 | -3.322
F,, -10.1532 | -10.1532 | -10.1532 | —10.1532
F,, —10.4029 | -10.4029 | -10.4029 |- 10.4029
F,; -9.99562 | —10.5364 | —10.5364 | —10.5364

Table 7. Results of WaOA's sensitivity analysis to the parameter T.

function value equal to 1.724901. Statistical results from the performance of WaOA and competitor algorithms
are reported in Table 13. This table shows that WaOA performs better in terms of statistical indicators. The con-
vergence curve from the WaOA implementation on the welded beam design is shown in Fig. 9.

Speed reducer design.  Speed reducer design is a real-world engineering optimization challenge aimed at
minimizing the weight of the speed reducer. A schematic of this design is shown in Fig. 102, The speed reducer
design problem is formulated as follows:

Consider X = [xl,xz, X3, X4 X5, X6» x7} = [b, m, p, 11, b, di, dz}.

Minimize f(X) = 0.7854x1x3 (3.3333x2 + 14.9334x3 — 43.0934) —1.508x; (x2 + x3)+7.4777 (x3 + x3 )
+0.7854(x4x§ + xsx%).

Subject to:
397.5 1.93x;
s1X) = —120, @) =—5--120 X)) = L—1<0,
X1X5X3 X1X5X3 X2X3Xg

1.93x3 1 745x4 \ 2 .
84(X) = 1120, gX) = st/ —— ) +169-10°=-1<0,
X2X3X7 110xg X2X3

1 745x5 \ 2
%(X) = \/(XS) +1575-10—1 <0,

85x§ X2X3
G0 =22 120 g6x="2_1<0 g =" _1<0,
40 - X1 - 12x; -
1.5x, 1.9 1.1x 1.9
g0 = 20T g = Yo

X4 X5
With

2.6 <x1 <3607 <x;<08,17 <x3 <28,73 <x4 <83,78 <x5 <83,29<x6 <39, and 5 < x; <5.5.
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Figure 5. WaOA’s convergence curves in the study of sensitivity analysis to parameter T.

The results obtained by employing WaOA and competitor algorithms in speed reducer design optimization
are reported in Table 14. The results show that WaOA has provided the optimal solution to this problem with the
values of the variables equal to (3.5, 0.7, 17, 7.3, 7.8, 3.35021, 5.28668) and the corresponding objective function
value equal to 2996.3482. The statistical results obtained from WaOA and the algorithms compared in Table 15
are released, which indicates the superiority of the proposed WaOA. The WaOA convergence curve while getting
the solution to the speed reducer design problem is shown in Fig. 11.

Pressure vessel design. Pressure vessel design is a real-world optimization challenge that aims to reduce
design costs. A schematic of this design is shown in Fig. 12%. The formulation of pressure vessel design problem
is as follows:
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\ WaOA \ WSO \ RSA \ MPA TSA MVO GWO TLBO GSA PSO GA
C15-F1
Avg 1.00E+02 4.78E+04 9.04E+07 7.08E+06 2.39E+07 1.28E+06 4.68E+06 4.26E+06 4.81E+06 6.10E+04 2.15E+07
std 152E-07 | 3.50E+04 | 2.70E+07 | 339E+06 | 1.88E+07 | 4.76E+05 | 5.18E+06 | 2.29E+06 | 1.21E+06 | 5.59E+04 | 2.36E+07
Rank 1 2 11 8 10 4 6 5 7 3 9
C15-F2
Avg 2.00E+02 | 1.01E+04 | 8.96E+09 | 4.16E+06 | 1.70E+09 | 1.57E+04 | 6.57E+06 | 9.88E+07 | 5.00E+03 | 3.06E+03 | 4.05E+06
Std 5.06E-06 | 2.89E+03 | 143E+09 | 2.32E+06 | 2.72E+09 | 8.00E+03 | 3.53E+06 | 2.77E+07 | 1.32E+03 | 4.98E+03 | 2.84E+06
Rank 1 4 11 7 10 5 8 9 3 2 6
C15-F3
Avg 315E+02 | 320E+02 | 321E+02 | 3.20E+02 | 3.20E+02 | 320E+02 | 320E+02 | 320E+02 | 320E+02 | 3.20E+02 | 3.20E+02
Std 1.00E+01  |570E-02 | 6.29E—02 | 8.88E—02 | 1.71E-01 123E-02 | 671E-02  |539E-02 | 1.22E-05 | 3.40E—06 | 1.20E—01
Rank 1 10 11 5 8 4 9 7 2 3 6
C15-F4
Avg 409E+02 | 4.16E+02 | 4.68E+02 | 447E+02 | 448E+02 | 425E+02 | 4.13E+02 | 436E+02 | 4.32E+02 | 4.18E+02 | 4.28E+02
Std 237B+00 | 577E-01  |4.16E+00 | 1.83E+01 | 8.18E+00 | 8.54E+00 |3.08E+00 | 1.44E+00 | 6.96E+00 | 8.18E+00 | 5.21E+00
Rank 1 3 11 9 10 5 2 8 7 4 6
C15-F5
Avg 6.10E+02 1.11E+03 1.82E+03 1.71E+03 1.54E+03 1.19E+03 1.05E+03 1.59E+03 1.62E+03 1.38E+03 8.01E+02
Std 8.78E+01 5.73E+02 1.98E+02 2.44E+02 2.33E+02 1.17E+02 3.06E+02 1.45E+02 1.97E+02 4.01E+02 1.88E+02
Rank 1 4 11 10 7 5 3 8 9 6 2
C15-F6
Avg 6.06E+02 8.59E+02 1.33E+06 4.45E+05 1.77E+04 5.66E+03 4.48E+04 2.34E+04 9.37E+04 3.97E+03 1.28E+05
std 387E+00 | 1.65E+02 | 2.22E+06 | 3.72E+05 | 2.71E+04 | 3.44E+03 | 4.17E+04 | 2.80E+04 | 8.35E+04 | 4.50E+03 | 2.12E+05
Rank 1 2 11 10 5 4 7 6 8 3 9
C15-F7
Avg 7.01E+02 7.02E+02 7.25E+02 7.05E+02 7.14E+02 7.02E+02 7.03E+02 7.04E+02 7.04E+02 7.03E+02 7.05E+02
std 321E-01 | 104E+00 | 1.28E+01 | 1.63E+00 | 9.16E+00  |7.26E-01 | 126E+00  |8.04E-01  |4.26E-01 | 1.45B+00 | 4.35E—01
Rank 1 2 11 9 10 3 5 6 7 4 8
C15-F8
Avg 8.01E+02 | 8.66E+02 | 1.95B+05 | 1.17E+04 | 5.30E+05 | 6.72E+03 | 450E+03  |3.27E+03 | 4.31E+05 | 8.05E+04 | 5.37E+05
std 481E-01  |456E+01 | 273E+05 | 8.05E+03 | 1.OSE+06 | 7.65E+03 | L67E+03 | 7.52B+02 | 5.82E+05 | 1.52E+05 | 7.04E+05
Rank 1 2 8 6 10 5 4 3 9 7 11
C15-F9
Avg 1.O0E+03 | 1.OOE+03 | 1.03E+03 | 1.00E+03 | 1.02E+03 | 1.00E+03 | LOOE+03 | L.OOE+03 | 1.00E+03 | 1.00E+03 | 1.00E+03
std 595E-02 | 537E-01 | 1.82E+00 | 2.33E-01  |2.10E+01  |9.06E-02 |1.51E-01  |9.66E-02  |2.03E-01  |5.05E-01 | 2.27E+00
Rank 2 8 11 6 10 1 3 5 4 7 9
C15-F10
Avg 122E+03 | 129E+03 | 5.75E+04 | 147E+04 | 8.46E+03 | 245E+03 | 1.99E+03 | 4.48E+03 | 1.43E+05 | 228E+03 | 8.56E+03
Std 2.20E-01 6.41E+01 5.21E+04 1.91E+04 4.47E+03 1.58E+03 6.42E+02 9.19E+02 1.19E+05 6.70E+02 8.29E+03
Rank 1 2 10 9 7 5 3 6 11 4 8
C15-F11
Avg 133E+03 | 126E+03 | 149E+03 | 1.53E+03 | 1.35E+03 | 1.43E+03 | 1.43E+03 | 133E+03 | 140E+03 | 145E+03 | 1.33E+03
Std 1.48E+02 1.65E+02 7.13E+01 1.42E+02 1.55E+02 6.58E+01 6.80E+01 1.40E+02 8.10E-01 1.09E+02 1.40E+02
Rank 2 1 10 11 5 7 8 3 6 9 4
C15-F12
Avg 1.30E+03 1.31E+03 1.34E+03 1.31E+03 1.31E+03 1.30E+03 1.30E+03 1.31E+03 1.30E+03 1.30E+03 1.31E+03
std 454E-01 | 4.00E+00 | 6.01E+00 | 581E+00 | 2.14E+01 | 4.61E-01 | 6.84E-01 | 1.28E+00 | 4.74E-01 | L11E+00 | 1.86E+00
Rank 2 7 11 8 10 4 3 6 1 5 9
C15-F13
Avg 130E+03 | 1.30E+03 | 1.30E+03 | 1.30E+03 | 1.31E+03 | 1.30E+03 | 1.30E+03 | 1.30E+03 | 1.53E+03 | 1.30E+03 | 1.30E+03
Std 6.61E-05 | 856E-02  |7.92E-02 | 9.65E-04 | 8.72E+00 | 1.89E—04 |7.89E-05 | 9.94E-04 | 226E+02  |244E-03 | 9.98E—01
Rank 1 8 7 4 10 3 2 5 11 6 9
C15-F14
Avg 363E+03 | 3.68E+03 | 1.37E+04 | 8.39E+03 | 1.05E+04 | 537E+03 | 7.76E+03 | 7.13E+03 | 7.04E+03 | 472E+03 | 4.54E+03
Std 142E+03 | 141E+03 | 3.62E+03 | 154E+01 | 3.76E+03 | 4.16E+03 | 1.65E+03 | 3.33E+03 | 3.80E+03 | 6.28E+02 | 9.97E+02
Rank 1 2 11 9 10 5 8 7 6 4 3
Continued
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\ WaOA \ WSO \ RSA \ MPA TSA MVO GWO TLBO GSA PSO GA
C15-F15
Avg 1.60E+03 1.60E+03 2.25E+03 1.60E+03 2.56E+03 1.60E+03 1.61E+03 1.61E+03 1.60E+03 1.61E+03 1.62E+03
Std 1.56E-06 | 5.86E+00 | 3.88E+02 | 1.14E+00 | 1.85E+03 | 8.24E-03 | LI4E+01 | 1.98E+00 | 4.71E-10 LI9E+01 | 3.03E+00
Rank 2 4 10 5 11 3 8 7 1 6 9
Sum rank 19 61 155 116 133 63 79 91 92 73 108
Meanrank | 1.2666667 | 4.0666667 | 10.333333 | 7.7333333 | 8.8666667 | 4.2 52666667 | 6.0666667 | 6.1333333 | 4.8666667 | 7.2
Total rank 1 2 11 9 10 3 5 6 7 4 8

Table 8. Evaluation results of the CEC 2015 test suite functions.

Consider X = [xy,x2,x3,%4] = [Ts, Ty, R, L].
Minimize f(X) = 0.6224x1x3x4 + 1.778x2%3 + 3.1661x3x4 + 19.84x3x;3.
Subject to:

g (X) = —x1 +0.0193x3 < 0, gz(X) = —x + 0.00954x3 < 0,

4
(X)) = —7xixg — gnxg + 1296000 < 0, g4(X) = x4 — 240 < 0.

With
0 < x1,x, <100, and 10 < x3,x4 < 200.

WaOA and competitor algorithms are used in optimizing pressure vessel design. The results obtained for the
design variables of this topic are released in Table 16. Based on this table, WaOA provides the optimal values
of the design variables equal to (0.7782641, 0.3847753, 40.32163, 199.8713), which leads to the value equal to
5883.9604 for the objective function. The statistical indicators results obtained of performances of WaOA and
competitor algorithms are presented in Table 17. Statistical results indicate that WaOA has effectively optimized
the pressure vessel design challenge by providing more favorable values for statistical indicators. The WaOA
convergence curve in achieving the optimal solution is shown in Fig. 13.

Evaluation of twenty-two real-world optimization problems from the CEC 2011 test suite. In
this subsection, the performance of WaOA in handling real-world applications is challenged on twenty-two con-
strained optimization problems from the CEC 2011 test suite. This test suite has twenty-two optimization prob-
lems, namely: parameter estimation for frequency-modulated (FM) sound waves, the Lennard-Jones potential
problem, the bifunctional catalyst blend optimal control problem, optimal control of a nonlinear stirred tank
reactor, the Tersoff potential for model Si (B), the Tersoff potential for model Si (C), spread spectrum radar
polyphase code design, transmission network expansion planning (TNEP) problem, large-scale transmission
pricing problem, circular antenna array design problem, and the ELD problems (which consist of DED instance
1, DED instance 2, ELD Instance 1, ELD Instance 2, ELD Instance 3, ELD Instance 4, ELD Instance 5, hydro-
thermal scheduling instance 1, hydrothermal scheduling instance 2, and hydrothermal scheduling instance 3),
the Messenger spacecraft trajectory optimization problem, and the Cassini 2 spacecraft trajectory optimization
problem. Full details and description of the CEC 2011 test suite are available at®. The results of employing WaOA
and competitor algorithms on these real-world optimization problems are presented in Table 18. The boxplot
diagrams obtained from the performance of metaheuristic algorithms in handling CEC 2011 test suite optimiza-
tion problems are drawn in Fig. 14. Based on the simulation results, WaOA is the first best optimizer to solve
all C11-F1 to C11-F22 optimization problems. Based on the simulation results, the proposed WaOA approach
has provided better results in most of the optimization problems and has provided superior performance in
handling the CEC 2011 test suite in competition with competing algorithms. Also, the results obtained from the
statistical analysis for p-value show that WaOA has a significant statistical superiority compared to competitor
algorithms.

Conclusions and future works

In this study, a new bio-inspired metaheuristic algorithm called the Walrus Optimization Algorithm (WaOA) was
developed based on the natural behaviors of walruses. Feeding, escaping, fighting predators, and migrating are
the primary sources of inspiration used in the design of WaOA. Therefore, the WaOA theory was explained, and
its mathematical modeling was presented in three phases: (i) feeding strategy, (ii) migration, and (iii) escaping
and fighting against predators. Sixty-eight standard benchmark functions of various types of unimodal, multi-
modal, the CEC 2015 test suite, and the CEC 2017 test suite, were employed to analyze WaOA performance in
providing solutions. The information on these test functions is specified in the Appendix and Tables A1 to A5.
The optimization results of unimodal functions showed the high ability of WaOA exploitation in local search to
converge towards global optimal. The optimization results of multimodal functions indicated the high ability
of WaOA exploration in global search and not to be caught in locally optimal solutions. WaOA’s performance
results were compared with the ten well-known metaheuristic algorithms. The simulation and comparison results
showed that the proposed WaOA approach has a high ability to balance exploration and exploitation and is much
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\ WaOA \ WSO \ RSA \ MPA TSA MVO GWO TLBO GSA PSO GA
C17-F1
Avg 100.00004 4005.6583 9.571E+09 4,504,091.7 5.069E+09 5898.8934 7,663,270.9 86,504,717 202.1255 2974.6435 13,576,411
Std 3857E-05 |5309.3214 |2312E+09 | 2221,337.5 | 7.611E+09 | 1961.9458 | 15,264,926 | 25,190,665 | 11501188 | 30684227 | 1,781,695.6
Rank 1 4 11 6 10 5 7 9 2 3 8
C17-F2
Avg 200.00002 | 42281754 | 1.994E+10 | 37,313,852 | 1.455E+10 | 23,697.882 | 7,468,532.5 | 257,121,613 |1255.1705 | 35,032,131 | 32,991,045
Std 1.I8E-05 | 4865.4087 | 4.47E+09 56,709,504 | LOAIE+10 | 10,810.599 | 14,605,747 | 52,488,502 | 1160.2677 | 70,055,940 | 19,701,103
Rank 1 3 11 8 10 4 5 9 2 7 6
C17-F3
Avg 300 300.66248 | 12,372.195 | 1538.0906 | 79839163 | 300.03174 | 4578.8062 | 970.53362 | 9455.1389 | 300 40,090.229
Std 1573E-10 | 8.10E-01 | 3673.3763 | 823.4105 72283746 | 00177723 | 3242.8635 | 47935917 | 31735597 | 5.684E-14 | 1.61E+04
Rank 2 4 10 6 8 3 7 5 9 1 11
C17-F4
Avg 400 402.69156 | 12047711 | 479.68829 | 554.74363 | 403.83135 | 407.54618 | 430.18871 | 410.28556 | 402.6291 | 418.7015
std 4122E-07 | 29072717 |624.83773 | 61325713 | 90.662778 | 15737425 | 03059483 | 28.554211 | 8.7544971 | 3.7996053 | 3.0735855
Rank 1 3 11 9 10 4 5 8 6 2 7
C17-F5
Avg 51019832 | 51144508 | 604.14973 | 567.45322 | 565.26475 | 5227829 | 520.19777 | 53633148 | 549.0015 53855953 | 536.08736
Std 1.6992136 0.5709551 9.5964298 16.615571 8.2775098 15.06703 12.849548 5.835234 6.9587408 13.157491 5.0403291
Rank 1 2 11 10 9 4 3 6 8 7 5
C17-F6
Avg 600.00031 | 60171109 |644.53432 | 634.05295 | 638.7989 603.06512 | 600.61836 | 61247322 | 62110746 | 610.33258 | 61023111
std 00001343 | 1463828 | 9.7346987 | 12.368649 | 14.732547 | 3339361 | 0.6472702 | 2.8673291 | 8.0147542 | 8.4990205 | 2.0708594
Rank 1 3 11 9 10 4 2 7 8 6 5
C17-F7
Avg 717.64017 722.19608 800.7207 766.54081 822.42204 729.56658 732.19707 753.07534 716.49748 730.7263 742.2823
std 21495234 | 8303089 | 3.2023255 | 25183691 | 16346488 | 8.1279419 | 55558736 | 95461724 | 39191109 | 10.55981 | 1.6662753
Rank 2 3 10 9 11 4 6 8 1 5 7
C17-F8
Avg 808.45715 | 811.95306 |863.08934 | 83550469 |831.72026 |827.1168 | 811.8188 831.86546 | 819.89915 | 82338149 | 823.11839
std 17233196 | 2.1495061 | 67267648 | 6.3444503 | 7.8313473 | 19350475 | 43750491 | 69014827  |3.1463198 | 69171262 |5.2318773
Rank 1 3 11 10 8 7 2 9 4 6 5
C17-F9
Avg 900 90523523 | 1654.0566 | 1539.8706 | 1144.9518 | 900.0254 | 962.68206 | 932.13388 | 955.75337 | 926.84022 | 904.554
std 1.683E-08 | 6.98E+00 | 2.84E+02 54748016 | 86402315 | 0.0434752 | 72.920311 | 29.975945 | 66.794413 | 42552004 | 1.6048115
Rank 1 4 11 10 9 2 8 6 7 5 3
C17-F10
Avg 1609.1526 | 1697.3584 | 2579.7024 | 2103.8934 | 2047.56 1766.1425 | 1628.3692 | 2487.3367 | 27382993 | 20164711 | 1680.1752
std 63444048 | 32493072 |306.17817 | 34397201 | 16725007 | 49529733 |36.706618 |196.14215  |414.01026 | 1255258 | 195.94284
Rank 1 4 10 8 7 5 2 9 11 6 3
C17-F11
Avg 11029976 | 1109.5838 | 5308.3512 | 12117691 | 1248.9475 | 11359375 |1153.3651 | 11549136 | 1123.9687 | 11537295 | 1932.1708
Std 1.8340875 8.9302238 2509.2652 45.169228 134.61252 24.701296 56.570343 24.344365 8.2568248 10.621192 1460.7433
Rank 1 2 11 8 9 4 5 7 3 6 10
C17-F12
Avg 1224.2329 6371.0574 323,042,178 4,940,009.8 4,337,558 6.74E+05 522,985.26 3,104,175.8 948,157.78 18,665.709 1,728,527.2
std 19.82966 | 5237.7263 | 138,057,073 | 5,936,430.7 | 4,356,750.6 | 6.13E+05 | 523,173.23 | 2,091,217.6 | 1,265,852.4 | 12,647.309 | 2,601,729.6
Rank 1 2 11 10 9 5 4 8 6 3 7
C17-F13
Avg 1304.3998 | 14362569 | 3,433,392.8 | 13,523.963 | 14,864.261 | 1.50E+04 | 7408.9458 | 15,870.564 | 12,818.438 | 8543.6896 | 17,948.699
std 18121278 | 85771613 | 3,712,0092 | 11,827.768 | 6748.8206 | 1.26E+04 | 8552.8328 | 14812216 | 24735339 | 5115.9967 | 12,398.879
Rank 1 2 11 6 7 8 3 9 5 4 10
C17-F14
Avg 1402.7375 | 1447.3093 | 16,184.889 | 2824.7697 | 3410.3822 | 1442.5054 | 3315.0362 | 1552.051 6218.272 2979.7936 | 5062.1231
std 09531651 | 17.56891 | 15042221 | 17837714 | 21955301 | 16313511 |2077.2433 | 28205894 | 92937787 | 1240.587 | 63304778
Rank 1 3 11 5 8 2 7 4 10 6 9
Continued
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\ WaOA \ WSO \ RSA \ MPA TSA MVO GWO TLBO GSA PSO GA
C17-F15
Avg 1500.457 1520.2257 12,335.319 8356.3696 6352.9142 1841.005 6220.8329 1680.1684 17,291.842 4169.7606 3902.2726
Std 0.1910035 | 14.358268 | 8013.0628 | 9589.7211 | 3732.9251 | 633.67594 | 1192.3378 | 37.759578 | 6993.8156 | 29192862 | 2148.9119
Rank 1 2 10 9 8 4 7 3 11 6 5
C17-F16
Avg 16013414 | 1666.8615 |2044.7313 | 1977.7889 | 1879.6084 | 1732.9873 | 1733.6205 | 1715.3545 | 21235173 | 1881.8063 | 1821.5272
Std 02819816 | 73.125749 |77.078212 | 260.53269 | 116.61807 | 16042116 |104.31509 | 11173755 | 99.236078 | 168.24657 | 58.360282
Rank 1 2 10 9 7 4 5 3 11 8 6
C17-F17
Avg 1722.8854 | 1744.8219 | 18402169 | 1772.1101 | 1851.4808 | 1756.9088 | 1772.6013 | 1777.1329 | 1835.1183 | 1784.4765 | 1754.133
Std 12581607 | 13.521179 | 38.112673 | 28.70145 104.05434 | 52167653 | 50.02034 27487099 | 101.85986 | 66.170275 | 5.5600511
Rank 1 2 10 5 11 4 6 7 9 8 3
C17-F18
Avg 18014365 | 18297721 | 99,279,162 | 27,952.74 | 35,640.588 | 13,759.79 | 28,891.102 | 47,436.515 | 5694.8466 | 12,575.652 | 12,737.378
Std 13307674 | 17.083301 | 138,699,482 |17,630.376 |21,701.121 | 10,600.924 |20,917.048 |20,041.434 |47453429 | 16,839.651 |8104.9154
Rank 1 2 11 7 9 6 8 10 3 4 5
C17-F19
Avg 19007242 | 19039714 |527,934.93 | 27,988.531 |77,738.078 | 21935018 |8215.5575 | 2025.1666 | 36,470.027 | 61,702.038 | 4801.2686
Std 0.193972 3.2499933 636,547.59 20,663.325 134,371.74 433.48789 8056.2529 39.983743 12,447.72 101,179.04 5033.0595
Rank 1 2 11 7 10 4 6 3 8 9 5
C17-F20
Avg 20107371 | 20644114 |2301.9518 | 2189.5507 | 2160.5974 | 2151.2179 |2047.7079 | 2085.9689 | 23655044 | 21489694 | 2056.9687
std 10208906 | 57.733768 | 25.000475 | 88.30438 70431939 | 2693479 | 16640885 | 18.109296 | 13150071 | 51.212021 | 4.5614343
Rank 1 4 10 9 8 7 2 5 11 6 3
Cl17-F21
Avg 2200 2290.8044 2346.8044 2352.0055 2317.1897 2319.8346 2314.2228 2272.5201 2351.4715 2336.4486 2227.6461
std 6.913E-06 | 4447952 |72243642 | 25285867 | 69.5931290 | 9.1135999 |3.2521393 | 76.685514 | 30.582882 | 2.2640433 | 10.653304
Rank 1 4 9 11 6 7 5 3 10 8 2
C17-F22
Avg 2250496 | 23127444 | 2996.635 23143395 | 25339327 | 2303.6528 | 23065265 | 23332749  |2300.0861 |2314.0531 | 2316.0897
std 58307723 | 6.0920769 | 180.07862 | 17.751045 | 10092037 | 12728103 | 26166121 | 10.956332 | 0.1722197 | 24.064845 | 3.4298382
Rank 1 5 11 7 10 3 4 9 2 6 8
C17-F23
Avg 2610776 | 2635.008 | 2689.6255 | 2650.6824 | 2754.766 26189319 | 2621.7636 | 2632.4649 | 2756311 2657.0042 | 2661.2858
std 29977776 | 13.912924 | 11.692104 | 19466531 | 45976842 | 6.4893472 | 15056006 | 4.3053546 | 71277096 | 41.148475 | 11.807443
Rank 1 5 9 6 10 2 3 4 11 7 8
C17-F24
Avg 2500.0003 | 2682498 |2870.0973 | 2771212 2834.0566 | 2754.0268 | 27411157 | 27634569 | 26524055 | 26322162 | 2654.7784
std 0000142 | 12166169 |31.220112 | 12.686776 | 39.395546 | 7.1079038 | 10.523085 |6.7503475  |176.04108 | 1527966 | 149.58103
Rank 1 5 11 9 10 7 6 8 3 2 4
C17-F25
Avg 2897.7436 | 2935.6309 |33433736 | 29517858 | 3087.8795 | 2921.0788 | 2928.416 29413726 | 2932.6657 | 2909.618 | 2954.021
Std 0.0014007 25.405188 59.618626 33.467254 373.67949 26.250929 14.749164 17.883979 22.027622 23.135637 3.1906326
Rank 1 6 11 8 10 3 4 7 5 2 9
C17-F26
Avg 2825.0016 3025.6385 4345.855 3648.1255 3431.5898 3170.0765 2886.8783 2976.3185 3624.8912 3420.5334 3069.0681
std 49998967 | 10441524 | 10617494 | 585.55715 | 354.13465 | 539.96121 | 92382389 | 29.400728 | 708.34009 | 727.58805 | 35394045
Rank 1 4 11 10 8 6 2 3 9 7 5
C17-F27
Avg 3089.2093 | 3120.0204 |3158.1751 | 31284995 | 31617517 | 31085107 | 31122837 | 31082979 | 3252.8976 | 3136.9496 | 3141.3768
std 02503956 | 22.336942 | 30215021 | 34.632185 | 61440793 | 28.654321 | 41.837057 | 23.994805 | 6.1472642 | 38.942622 | 32.540974
Rank 1 5 9 6 10 3 4 2 11 7 8
C17-F28
Avg 31000001 | 3173.5788 | 37402471 | 35350128 | 3627.3232 | 3264.0278 | 34232143 | 34375636 | 3478.1634 | 3279.8176 | 3359.2612
std 3817E-05 | 14020046 | 197.0247 15422247 | 80.831235 | 156.81375 | 12.61691 21369409 | 12226383 | 147.67403 | 1.56E+02
Rank 1 2 11 9 10 3 6 7 8 4 5
Continued
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[waoA  [wso | Rsa | MPA TSA MVO GWO TLBO GSA PSO GA
C17-F29
Avg 3143.6425 | 3188.9391 | 3437.8261 33617066 | 3309.3923 | 3226.1848 |3191.8576 | 3180.659 33453659 | 3248.8239 | 3220.4056
Std 13.341168 | 12.648429 | 200.8649 94.237596 | 158.43895 | 35134243 | 20.713203 | 36.903709 137.98739 | 62.700717 | 30.026932
Rank 1 3 11 10 8 6 4 2 9 7 5
C17-F30
Avg 33963409 | 3932.8711 | 9,969,841 1,378,673.9 | 4,145,442 38,15539 | 868,418.89 | 905,676.07 |1,427,0947 |10,05476 | 1,317,197.3
std 0.846773 301.84652 | 7,022,481.1 | 1,278,684 3,562,683.3 | 2.66E+04 | 812,465.74 | 87502324  |477,453.09 | 40357159 | 1,114,518.6
Rank 1 2 11 8 10 4 5 6 9 3 7
Sum rank 32 97 317 244 270 134 143 186 212 161 184
Meanrank | 1.0666667 | 3.2333333 | 10.566667 | 8.1333333 |9 44666667 | 47666667 | 6.2 7.0666667 | 5.3666667 | 6.1333333
Total rank 1 2 11 9 10 3 4 7 8 5 6
Table 9. Evaluation results of the CEC 2017 test suite functions.
P P
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Figure 6. Schematic view of the tension/compression spring problem.
Optimum variables
Algorithm | d D P Optimum cost
WaOA 0.0519693 | 0.363467 |10.9084 |0.012672
WSO 0.057641 | 0.583026 |14.00465 |0.012722
RSA 0.051734 | 0.360336 |11.54961 |0.01317
MPA 0.050657 | 0.340484 |11.98053 |0.012782
TSA 0.049701 | 0.338294 |11.95873 |0.012786
MVO 0.049525 | 0.307463 |14.85743 |0.013305
GWO 0.049525 | 0.312953 |14.09102 |0.012926
TLBO 0050297 | 0331597 |12.60176 |0.012818
GSA 0.049525 | 0.314295 |14.09343 |0.012983
PSO 0.049624 | 0307163 |13.86693 |0.013147
GA 0049772 | 0313344 |15.09475 |0.012885
Table 10. Comparison results for the tension/compression spring design problem.
Algorithm | Best Mean Worst Std. dev | Median
WaOA 0.012672 |0.012701 | 0.012706 |0.001106 | 0.012700
WSO 0.012722 |0.012754 |0.012766 |0.007391 |0.012744
RSA 001317 |0.013848 |0.015774 |0.006119 |0.013727
MPA 0.012782 |0.012799 |0.01283 |0.00567 | 0.012802
TSA 0.012786 |0.012812 |0.012836 |0.004191 |0.012815
MVO 0.013305 |0.014951 |0.018023 |0.002293 |0.013312
GWO 0.012926 |0.014594 |0.018 0.001636 | 0.014147
TLBO 0.012818 |0.012956 |0.013116 |0.007828 |0.012961
GSA 0.012983 |0.01356 |0.01434 |0.000289 |0.013488
PSO 0.013147 |0.014162 |0.016398 |0.002092 |0.013119
GA 0.012885 |0.013188 |0.015352 |0.000378 |0.013069
Table 11. Statistical results for the tension/compression spring design problem.
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Figure 7. Convergence analysis of the WaOA for the tension/compression spring design optimization problem.

Figure 8. Schematic view of the welded beam design problem.

Optimum variables
Algorithm | h 1 t b Optimum cost
WaOA 0.20573 3.470489 9.036624 | 0.20573 1.724901
WSO 0.205721 | 3.470747 9.037504 | 0.205721 | 1.725082
RSA 0.218482 | 3.510591 8.873427 | 0.224932 | 1.866307
MPA 0.205604 | 3.475541 9.037606 | 0.205852 | 1.728002
TSA 0.205719 | 3.476098 9.03877 | 0.20627 1.729338
MVO 0.19745 3.315724 | 10.0000 0.201435 | 1.822865
GWO 0.205652 | 3.472796 9.042739 | 0.20575 1.727813
TLBO 0.204736 | 3.536998 9.006091 | 0.210067 | 1.761559
GSA 0.147127 | 5.491842 | 10.0000 0.217769 | 2.175806
PSO 0.164204 | 4.033348 | 10.0000 0.223692 | 1.876513
GA 0.206528 | 3.636599 | 10.0000 0.20329 1.838741

Table 12. Comparison results for the welded beam design problem.
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Algorithm | Best Mean Worst Std. dev | Median
WaOA 1.724901 | 1.7270245 | 1.731028 | 0.005142 | 1.724508
WSO 1.725082 | 1.727023 1.725022 | 0.007133 | 1.726027
RSA 1.866307 | 1.892247 2.01658 0.007961 | 1.883728
MPA 1.728002 | 1.729207 1.729443 | 0.000287 | 1.729166
TSA 1.729338 | 1.730509 1.730945 | 0.001159 | 1.730468
MVO 1.822865 | 2.234675 3.054198 | 0.325161 | 2.249057
GWO 1.727813 | 1.733066 1.74506 0.004876 | 1.730801
TLBO 1.761559 | 1.821214 1.877075 | 0.027597 | 1.823691
GSA 2.175806 | 2.549219 3.009536 | 0.25636 2.499998
PSO 1.876513 | 2.123388 2.324666 | 0.034888 |2.101153
GA 1.838741 | 1.366196 2.039231 |0.139758 | 1.939537

Table 13. Statistical results for the welded beam design problem.
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Figure 9. Convergence analysis of the WaOA for the welded beam design optimization problem.
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Figure 10. Schematic view of the speed reducer design problem.

superior and more competitive against ten competitor metaheuristic algorithms. In addition, the results of the
WaOA implementation in addressing the four design issues and twenty-two real-world optimization problems
from the CEC 2011 test suite demonstrates the effectiveness of the proposed approach in real-world applications.

Although it was observed that WaOA had provided superior results in most of the benchmark functions,
the proposed approach has some limitations. The first limitation facing all metaheuristic algorithms is that it is
always possible to design newer algorithms that can provide better results than existing algorithms. The second
limitation of WaOA is that the proposed method may fail in some optimization applications. The third limita-
tion of WaOA is that the nature of random search in this algorithm leads to the fact that there is no guarantee
of achieving the global optimum. Moreover, the authors do not claim that the proposed WaOA approach is the
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Optimum variables
Algorithm b m P I L d, d, Optimum cost
WaOA 3.50000 0.700007 | 17 7.3 7.8 3.350209 | 5.286683 | 2996.3482
WSO 3.504191 | 0.70028 17.0068 7.311043 | 7.750249 | 3.35201 5.288865 | 2997.714
RSA 3.510772 | 0.70028 17.0068 7.399095 | 7.803283 |3.361271 | 5.291898 | 3006.339
MPA 3.498013 | 0.698879 | 16.97279 | 7.288825 |7.787514 | 3.347813 | 5.283283 | 2997.045
TSA 3.503107 | 0.698879 | 16.97279 |7.36976 7.80327 3.354383 | 5.281313 | 2999.781
MVO 3.496443 | 0.698879 | 16.97279 |8.287294 |7.787569 | 3.348954 | 5.281261 | 3004.253
GWO 3.504918 | 0.698879 | 16.97279 |7.398892 |7.803577 | 3.354609 |5.281322 | 3001.42
TLBO 3.50517 0.698879 | 16.97279 |7.288316 |7.787514 | 3.45745 5.283757 | 3029.041
GSA 3.596322 | 0.698879 |16.97279 |8.287294 |7.787514 |3.366182 |5.283768 | 3049.589
PSO 3.506667 | 0.698879 |16.97279 |8.337218 |7.787514 |3.358732 |5.282268 | 3066.02
GA 3.516528 | 0.698879 |16.97279 |8.357187 |7.787514 |3.363496 |5.283262 | 3027.481

Table 14. Comparison results for the speed reducer design problem.

Algorithm | Best Mean Worst Std. dev Median
WaOA 2996.3482 | 2999.4961 | 3000.972 1.2463198 | 2998.6108
WSO 2997.714 3003.365 3008.597 5.221708 | 3001.932
RSA 3006.339 3013.236 3028.83 10.37327 3011.845
MPA 2997.045 2999.033 3003.281 1.931539 | 2999.979
TSA 2999.781 3005.237 3008.143 5.836758 | 3003.911
MVO 3004.253 3104.623 3210.524 | 79.62197 3104.623
GWO 3001.42 3028.228 3060.338 | 13.01596 3026.419
TLBO 3029.041 3065.296 3104.15 18.07054 3064.988
GSA 3049.589 3169.692 3363.192 | 92.55386 3156.113
PSO 3066.02 3185.877 3312.529 |17.11513 3197.539
GA 3027.481 3294.662 3618.732 | 57.01195 3287.991

Table 15. Statistical results for the speed reducer design problem.
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Figure 11. Convergence analysis of the WaOA for the speed reducer design optimization problem.

best optimizer for all possible optimization tasks. This fact, of course, cannot be said about any optimizer due
to the validity of the NFL theorem.

The authors offer several study directions for future research, including designing the multi-objective version
of WaOA and the binary version of WaOA. In addition, the use of WaOA in solving optimization problems in
real-world applications is a possible line for further research.
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Figure 12. Schematic view of the pressure vessel design problem.

X

Optimum variables
Algorithm | T; T, R L Optimum cost
WaOA 0.778264 | 0.384775 | 40.32163 | 199.8713 | 5883.9604
WSO 0.836709 | 0.417284 | 43.20765 | 160.9094 | 6010.62
RSA 0.810993 | 0.443429 | 42.0335 175.915 6088.866
MPA 0.795294 | 0.393338 | 41.20008 | 200 5909.092
TSA 0.796137 | 0.393104 |41.21311 | 200 5912.899
MVO 0.826206 | 0.444881 |42.80841 |179.6187 |5914.925
GWO 0.864286 | 0.427753 | 44.77817 | 159.8146 | 6035.531
TLBO 0.835526 | 0.427107 | 42.66592 | 187.6027 | 6161.892
GSA 1.109637 | 0.970461 | 50.4285 173.2081 | 11,596.44
PSO 0.768879 | 0.408312 | 41.34057 |202.3494 |5913.862
GA 1.123661 | 0.926481 |45.43235 |183.6029 |6576.192

Table 16. Comparison results for the pressure vessel design problem.

Algorithm | Best Mean Worst Std.dev | Median
WaOA 5884.8824 | 5887.201 | 5894.172 | 21.041638 | 5886.401
WSO 6010.62 6017.883 | 6021.73 31.07972 6015.981
RSA 6088.866 6096.722 | 6107.989 | 38.11009 6094.545
MPA 5909.092 5913.984 |5918.883 | 29.06042 5912.763
TSA 5912.899 5918.082 |5921.196 |13.97272 5917.204
MVO 5914.925 6092.358 | 7427.921 | 66.91891 6445.037
GWO 6035.531 6506.504 | 7283.603 | 328.4812 6426.319
TLBO 6161.892 6355.281 | 6541.711 | 127.1797 6346.8

GSA 11,596.44 | 6871.379 |7191.564 |5816.728 6868.456
PSO 5913.862 6292.242 | 7037.332 | 498.3645 6140.245
GA 6576.192 6673.937 | 8041.527 | 660.4871 7620.206

Table 17. Statistical results for the pressure vessel design problem.
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Figure 13. Convergence analysis of the WaOA for the pressure vessel design optimization problem.
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\ WaOA \ WSO \ RSA \ MPA TSA MVO GWO TLBO GSA PSO GA
Cl1-F1
Mean 5.92E+00 1.60E+01 1.96E+01 7.33E+00 1.66E+01 1.28E+01 1.01E+01 1.66E+01 1.94E+01 1.62E+01 2.08E+01
Best 200E-10 | 1.31E+01 | 1.72E+01 | 3.17E-01 | 149E+01 | 1.07E+01  |9.50E-01 | 1.58E+01 | 1.67E+01 | 8.92E+00 | 1.90E+01
Worst 123E+01 | 192E+01 | 2.26E+01 | 126E+01 | 1.86E+01 | 1.53E+01 | 148E+01 | 1.74E+01 | 2.15B+01 | 225E+01 | 2.36E+01
Std 7.20E+00 3.34E+00 2.93E+00 6.06E+00 1.70E+00 2.14E+00 6.60E+00 7.48E-01 2.22E+00 6.16E+00 2.19E+00
Median 5.69E+00 | 1.58E+01 | 1.94E+01 | 8.18E+00 | 1.64E+01 | 1.26E+01 | 1.24E+01 | 1.67E+01 | 1.96E+01 | 1.67E+01 | 2.04E+01
Rank 1 5 10 2 7 4 3 8 9 6 11
Cl11-F2
Mean ~2.63E+01 | — L62E+01 |- 139E+01 | —2.53E+01 |- 136E+01 |- LISE+01 |- 232E+01 |- 1.33E+01 |- 1.72E+01 | -2.32E+01 |- 1.50E+01
Best —271E+01 | — 1.72E+01 | — 1.43E+01 | —2.59E+01 |- 1.66E+01 | — 1.33E+01 |- 248E+01 |- 1.44E+01 |- 2.16E+01 |- 2.44E+01 |- 1.68E+01
Worst — 2.54E+01 — 1.53E+01 — 1.34E+01 —2.41E+01 — 1.18E+01 — 1.02E+01 —2.01E+01 - 1.23E+01 - 1.37E+01 —2.14E+01 - 1.37E+01
Std 7.39E-01 1.04E+00 4.85E-01 8.62E-01 2.37E+00 1.44E+00 2.22E+00 9.45E-01 3.72E+00 1.38E+00 1.59E+00
Median ~2.64E+01 | — L.62E+01 | — 1.39E+01 | —2.55E+01 |- 1.30E+01 |- LI3E+01 |- 239E+01 |- 1.32E+01 |- 1.67E+01 |- 2.36E+01 |- 1.47E+01
Rank 1 6 8 2 9 11 4 10 5 3 7
C11-F3
Mean 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05
Best 1.15E-05 | 1.15-05 | 1.I5E-05 | 1.15E-05 | 1.I5E-05 | 1.15E-05 | 1.I5E-05 | 1.15B-05 | 1.15E-05 | 1.15E—05 | 1.15E-05
Worst 1.15E-05 | 115B-05 | 1.I5E-05 | 1.15E-05 | 1.15-05 | 1.15E-05 | 1.I15E-05 | 1.15E-05 | 1.156-05 | 1.I5E-05 | 1.15E-05
Std 2.00E-19 1.85E-11 4.17E-11 1.04E-15 1.99E-14 8.31E-13 3.11E-15 6.54E-14 1.68E-19 6.77E-20 2.29E-18
Median 1.15E-05 | 1.15-05 | 1.15E-05 | 1.15E-05 | 1.I5E-05 | 1.156-05 | 1.I5E-05 | 1.15E-05 | 1.15E-05 | 1.15E—05 | 1.15E-05
Rank 1 10 11 5 7 9 6 8 3 2 4
Cl11-F4
Mean 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00
Best 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00
Worst 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Median 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00
Rank 1 1 1 1 1 1 1 1 1 1 1
C11-F5
Mean ~341E+01 | —2.63E+01 | -223E+01 | —3.34E+01 |- 2.83E+01 | —2.82E+01 |- 320E+01 |- 1.45E+01 |- 2.85E+01 |- 127E+01 |- 1.34E+01
Best —347E+01 | -273E+01 |-241E+01 | -3.40E+01 |—3.19E+01 |-321E+01 |-—340E+01 |- 1.62E+01 |—320E+01 |- 157E+01 | — 1.47E+01
Worst —3.34E+01 — 2.55E+01 —2.03E+01 —3.23E+01 —2.39E+01 — 2.60E+01 —2.86E+01 — 1.33E+01 —2.57E+01 - 1.13E+01 - 1.21E+01
std 590E-01 | 7.75E-01 | 2.17E+00 | 7.93E-01 | 3.45E+00 | 2.99E+00 | 2.46E+00 | 1.32E+00 | 2.88E+00 | 2.17E+00 | 1.19E+00
Median —342E401 | —2.62E+01 | —223E+01 | —3.37E+01 |- 2.87E+01 |—273E+01 |-327E+01 |- 143E+01 |-2.81E+01 |- LI9E+01 |- 1.35E+01
Rank 1 7 8 2 5 6 3 9 4 11 10
C11-F6
Mean ~241E+01 | — 1.57E+01 | — 148E+01 | —229E+01 |- 1.02E+01 |- L.I9E+01 |- 2.04E+01 |- 5.83E+00 |- 2.23E+01 |- 6.55E+00 | —7.32E+00
Best —274E+01 |- L.60E+01 |- 1.52E+01 | - 2.60E+01 |- 1.76E+01 | — 1.83E+01 |—2.32E+01 |- 6.63E+00 | —2.60E+01 |- 9.54E+00 | — 1.I5E+01
Worst —2.30E+01 - 1.53E+01 - 1.38E+01 - 2.16E+01 — 7.30E+00 — 5.56E+00 — 1.88E+01 — 5.56E+00 — 1.94E+01 — 5.56E+00 — 5.56E+00
Std 232E+00 | 4.16E-01 | 7.25E-01 | 2.24E+00 | 520E+00 | 7.06E+00 | 2.20E+00 | 5.62E-01 | 3.08E+00 | 2.09E+00 | 2.99E+00
Median —230E+01 |- 1.57E+01 |- 1.52E+01 | —2.19E+01 |—8.01E+00 |- L.IS8E+01 |- 1.97E+01 |—-556E+00 |—2.18E+01 |- 5.56E+00 | — 6.09E+00
Rank 1 5 6 2 8 7 4 11 3 10 9
C11-F7
Mean 8.61E-01 | 148E+00 | 1.74E+00 | 9.18E-01 | 1.23E+00 | 8.78E-01 | 1.03E+00 | 1.58E+00 | 1.04E+00 | 1.OSE+00 | 1.59E+00
Best 582E-01 | 139E+00 | 1.56E+00 | 7.28E-01 | 1.04E+00 | 8.46E-01 | 8.50E-01 | 144E+00 | 8.34E-01  |8.58E-01 | 1.22E+00
Worst 1.03E+00 1.60E+00 1.93E+00 1.01E+00 1.55E+00 9.37E-01 1.22E+00 1.72E+00 1.21E+00 1.28E+00 1.79E+00
Std 212E-01 | 9.72E-02 | 1.56E-01 | 1.35E-01 | 2.37E-01 | 426E-02 | 1.59E-01 | 1.34E-01 | 1.75E-01 | 2.14E-01 | 2.71E—01
Median 9.18E-01 | 147E+00 | 174E+00 | 9.68E-01 | L16E+00 | 8.64E-01 | L.03E+00 | 1.57E+00 | LO7E+00 | L.O9E+00 | 1.68E+00
Rank 1 8 11 3 7 2 4 9 5 6 10
C11-F8
Mean 220E+02 | 2.74E+02 | 3.08E+02 | 222E+02 | 2.51E+02 | 2.23E+02 | 226E+02 | 2.23E+02 | 242B+02 | 429E+02 | 2.22E+02
Best 2.20E+02 2.52E+02 2.74E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.44E+02 2.20E+02
Worst 220E+02 | 3.03E+02 | 3.46E+02 | 224E+02 | 3.33E+02 | 2.34E+02 | 2.32E+02 | 2.34E+02 | 2.81E+02 | 5.13E+02 | 2.28E+02
std 0.00E+00 | 2.36E+01 | 3.09E+01 | 249E+00 | 5.74E+01 | 7.17E+00 | 7.46E+00 | 7.17E+00 | 3.06E+01 | 1.34E+02 | 4.38E+00
Median 2.20E+02 2.71E+02 3.07E+02 2.22E+02 2.26E+02 2.20E+02 2.26E+02 2.20E+02 2.33E+02 4.79E+02 2.20E+02
Rank 1 8 9 2 7 4 5 4 6 10 3
Continued
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\ WaOA \ WSO \ RSA \ MPA TSA MVO GWO TLBO GSA PSO GA

C11-F9
Mean 8.79E+03 4.68E+05 8.91E+05 1.83E+04 5.69E+04 1.13E+05 3.75E+04 3.44E+05 6.91E+05 9.08E+05 1.63E+06
Best 546E+03 | 3.14E+05 | 5.83E+05 | 1.04E+04 | 4.07E+04 | 6.46E+04 | 1.66E+04 | 2.85E+05 | 5.93E+05 | 7.29E+05 | 1.56E+06
Worst 140E+04 | 537E+05 | LOAE+06 | 249E+04 | 7.18E+04 | 1.72E+05 | 639E+04 | 4.42E+05 | 7.44E+05 | L11E+06 | 1.72E+06
Std 3.89E+03 1.11E+05 2.20E+05 6.98E+03 1.41E+04 4.64E+04 2.10E+04 7.27E+04 7.07E+04 2.15E+05 8.42E+04
Median 7.83E+03 | 5.11E+05 | 9.68E+05 | 1.90E+04 | 5.76E+04 | 1.0S8E+05 | 347E+04 | 3.25E+05 | 7.14E+05 | 8.96E+05 | 1.61E+06
Rank 1 7 9 2 4 5 3 6 8 10 11
C11-F10
Mean —2.15E+01 - 1.52E+01 - 1.38E+01 — 1.94E+01 — 1.55E+01 — 1.58E+01 - 1.53E+01 — 1.30E+01 — 1.45E+01 — 1.30E+01 — 1.28E+01
Best —2.18E+01 | — 1.62E+01 | — 1.42E+01 | — 1.98E+01 |- 1.93E+01 |—2.13E+01 |- 158E+01 |- 1.31E+01 |- 1.50E+01 |- 1.31E+01 |- 1.29E+01
Worst —2.08E+01 — 1.47E+01 — 1.35E+01 — 1.90E+01 — 1.36E+01 — 1.31E+01 — 1.44E+01 — 1.28E+01 - 1.39E+01 - 1.29E+01 - 1.26E+01
Std 4.99E-01 7.32E-01 2.97E-01 4.17E-01 2.70E+00 3.88E+00 6.90E-01 1.46E-01 5.93E-01 1.09E-01 1.29E-01
Median ~2.17E+01 | — 149E+01 |- 137E+01 |- 1.95E+01 |- 1.46E+01 |- 1.44E+01 |- 1.56E+01 |- 1.30E+01 |- 1.46E+01 |- 1.31E+01 |- 1.28E+01
Rank 1 6 8 2 4 3 5 10 7 9 11
Cl1-F11
Mean 572E+05 | 495E+06 | 7.51E+06 | 1.48E+06 | 5.07E+06 | LI9E+06 | 3.30E+06 | 445E+06 | 1.27E+06 | 4.46E+06 | 5.22E+06
Best 261E+05 | 471E+06 | 7.21E+06 | 1.36E+06 | 422E+06 | 627E+05 | 3.13E+06 | 4.38E+06 | 1.14E+06 | 440E+06 | 5.13E+06
Worst 829E+05 | 528E+06 | 7.71E+06 | 1.64E+06 | 6.13E+06 | 2.37E+06 | 3.55E+06 | 451E+06 | 1.44E+06 | 451E+06 | 5.26E+06
Std 2.61E+05 2.93E+05 2.23E+05 1.45E+05 8.29E+05 8.37E+05 1.87E+05 6.31E+04 1.38E+05 5.92E+04 6.50E+04
Median 5.99E+05 | 490E+06 | 7.56E+06 | 1.47E+06 | 496E+06 | 8.79E+05 | 3.26E+06 | 4.46E+06 | 1.26E+06 | 447E+06 | 5.24E+06
Rank 1 8 11 4 9 2 5 6 3 7 10
Cl11-F12
Mean 120E+06 | 7.22E+06 | L.I3E+07 | 1.26E+06 | 440E+06 | 1.31E+06 | 1.39E+06 | 1.22E+07 | 5.04E+06 | 2.13E+06 | 1.23E+07
Best 116E+06 | 6.92E+06 | 1L.OSE+07 | L19E+06 | 4.19E+06 | 118E+06 | 1.24E+06 | 1.15E+07 | 4.80E+06 | 2.00E+06 | 1.22E+07
Worst 1.25E+06 7.48E+06 1.20E+07 1.34E+06 4.52E+06 1.42E+06 1.51E+06 1.27E+07 5.21E+06 2.30E+06 1.24E+07
Std 4.72E+04 2.44E+05 6.44E+05 6.68E+04 1.62E+05 1.02E+05 1.17E+05 5.45E+05 1.83E+05 1.31E+05 9.84E+04
Median 120E+06 | 7.23E+06 | L.I3E+07 | 1.26E+06 | 446E+06 | 1.31E+06 | 1.40E+06 | 1.23E+07 | 5.07E+06 | 2.12E+06 | 1.23E+07
Rank 1 8 9 2 6 3 4 10 7 5 11
C11-F13
Mean 1.54E+04 | 1.58E+04 | 1.62E+04 | 1.55E+04 | 1.55E+04 | 1.55B+04 | 1.55E+04 | 1.59E+04 | 1.10E+05 | 1.55E+04 | 2.76E+04
Best 1.54E+04 | 156E+04 | 1.58E+04 | 1.55E+04 | 1.55E+04 | 1.55B+04 | 1.55E+04 | 1.56E+04 | 8.02E+04 | 1.55E+04 | 1.55E+04
Worst 1.54E+04 1.62E+04 1.70E+04 1.55E+04 1.55E+04 1.55E+04 1.55E+04 1.63E+04 1.50E+05 1.55E+04 6.39E+04
std 9.09E-03 | 2.66E+02 | 6.12E+02 | 2.46E+00 | 9.80E+00 | 2.40E+01 | 7.37E+00 | 3.46E+02 | 3.32B+04 | 2.17E+01 | 2.54E+04
Median 1.54E+04 | 157E+04 | 1.59E+04 | 1.55E+04 | 1.55E+04 | 1.55B+04 | 1.55E+04 | 1.57E+04 | 1.05E+05 | 1.55E+04 | 1.56E+04
Rank 1 7 9 2 3 6 5 8 11 4 10
Cl1-F14
Mean 1.83E+04 | 972E+04 | 1.95E+05 | 1.86E+04 | 1.93E+04 | 1.92E+04 | 1.91E+04 | 2.63E+05 | 1.90E+04 | 1.90E+04 | 1.90E+04
Best 1.82E404 | 746E+04 | 1.44E+05 | 1.85E+04 | 1.91E+04 | 1.91E+04 | 1.89E+04 | 2.83E+04 | 1.87E+04 | 1.89E+04 | 1.87E+04
Worst 1.84E+04 1.35E+05 2.79E+05 1.86E+04 1.98E+04 1.93E+04 1.92E+04 5.05E+05 1.91E+04 1.91E+04 1.92E+04
std 7.16E+01 | 2.82E+04 | 636E+04 | 6.95E+01 | 3.20E+02 | 7.17E+01 | 1.30E+02 | 241E+05 | 1.90E+02 | L.I7E+02 | 2.06E+02
Median 1.83E+04 | 897E+04 | 1.78E+05 | 1.86E+04 | 1.92E+04 | 1.93E+04 | 1.91E+04 | 2.60E+05 | 1.90E+04 | 190E+04 | 1.90E+04
Rank 1 9 10 2 8 7 6 11 3 5 4
C11-F15
Mean 329E+04 | 7.66E+05 | 161E+06 | 3.29E+04 | 5.10E+04 | 3.31E+04 | 330E+04 | 129E+07 | 2.57B+05 | 3.32E+04 | 6.66E+06
Best 328E+04 | 3.19E+05 | 6.76E+05 | 3.29E+04 | 330E+04 | 3.30E+04 | 3.30E+04 | 271E+06 | 2.28E+05 | 3.32E+04 | 3.03E+06
Worst 3.30E+04 1.92E+06 4.19E+06 3.30E+04 1.05E+05 3.31E+04 3.31E+04 1.93E+07 2.76E+05 3.32E+04 1.14E+07
Std 7.69E+01 | 8.11E+05 | 1.81E+06 | 6.60E+01 | 3.77E+04 | 645E+01 | 5.09E+01 | 7.92E+06 | 2.38E+04 | 1.74E+01 | 4.03E+06
Median 329E+04 | 4.14E+05 | 7.85E+05 | 3.29E+04 | 331E+04 | 331E+04 | 330E+04 | 149E+07 | 2.61E+05 | 3.32E+04 | 6.09E+06
Rank 1 8 9 2 6 4 3 11 7 5 10
C11-F16
Mean 1.34E+05 | 8.14E+05 | L.66E+06 | 1.37E+05 | 143E+05 | 140E+05 | 1.44E+05 | 7.45E+07 | 157E+07 | 6.67E+07 | 6.40E+07
Best 131E+05 | 264E+05 | 4.19E+05 | 1.35E+05 | 1.41E+05 | 1.33E+05 | 142E+05 | 7.26E+07 | 7.99E+06 | 5.52E407 | 5.18E+07
Worst 1.36E+05 | 1.89E+06 | 4.08E+06 | 141E+05 | 1.45E+05 | 147E+05 | 1.49E+05 | 7.67E+07 | 2.84E+07 | 7.97E+07 | 8.19E+07
std 239E+03 | 7.70E+05 | 1.73E+06 | 2.64E+03 | 209E+03 | 6.15E+03 | 3.58E+03 | 1.78E+06 | 9.28E+06 | LI1E+07 | 1.35E+07
Median 1.33E+05 5.49E+05 1.06E+06 1.36E+05 1.44E+05 1.40E+05 1.42E+05 7.44E+07 1.32E+07 6.60E+07 6.12E+07
Rank 1 6 7 2 4 3 5 11 8 10 9
Continued
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\ WaOA \ WSO \ RSA \ MPA TSA MVO GWO TLBO GSA PSO GA
Cl11-F17
Mean 1.93E+06 7.51E+09 1.30E+10 2.23E+06 1.07E+09 2.92E+06 2.84E+06 1.87E+10 9.40E+09 1.75E+10 1.83E+10
Best 1.92E+06 | 6.40E+09 | 9.34E+09 | 1.95E+06 | 8.86E+08 | 2.24E+06 | 2.02E+06 | 1.80E+10 | 827E+09 | 1.54E+10 | 1.71E+10
Worst 1.94E+06 | 833E+09 | 1.59E+10 | 2.75B+06 | 123E+09 | 345E+06 | 440E+06 | 1.95E+10 | 9.96E+09 | 2.02E+10 | 2.07E+10
std 120E+04 | 8.96E+08 | 2.96E+09 | 3.75E+05 | 1.85B+08 | 5.86E+05 | 1.13B+06 | 6.63E+08 | 8.05B+08 | 226E+09 | 1.70E+09
Median 1.92E+06 | 7.66E+09 | 1.34E+10 | 2.11E+06 | 1.09E+09 | 3.00E+06 | 2.48E+06 | 1.86E+10 | 9.68E+09 | 1.71E+10 | 1.77E+10
Rank 1 6 8 2 5 4 3 11 7 9 10
C11-F18
Mean 9.42E+05 | 4.62E+07 | 9.94E+07 | 9.67E+05 | 1.87E+06 | 9.81E+05 | 1.02E+06 | 2.61E+07 | 9.48E+06 | 1.I3E+08 | 9.61E+07
Best 938E+05 | 3.18E+07 | 6.87E+07 | 9.48E+05 | L66E+06 | 9.61E+05 | 9.63E+05 | 2.07E+07 | 7.11E+06 | 9.50E+07 | 9.26E+07
Worst 9.45E+05 | 526E+07 | L13E+08 | LO2E+06 | 2.16E+06 | 9.89E+05 | L16E+06 | 2.83E+07 | L19E+07 | 1.26E+08 | 9.97E+07
Std 2.77E+03 1.02E+07 2.20E+07 3.46E+04 2.54E+05 1.41E+04 1.00E+05 3.79E+06 2.26E+06 1.44E+07 3.03E+06
Median 9.43E+05 | 5.03E+07 | 1.08E+08 | 9.52E+05 | 1.84E+06 | 9.86E+05 | 9.72E+05 | 2.78E+07 | 9.44E+06 | 1.I6E+08 | 9.61E+07
Rank 1 8 10 2 5 3 4 7 6 11 9
C11-F19
Mean 1.03E+06 | 455E+07 | 9.73E+07 | 112E+06 | 2.23E+06 | 140E+06 | 1.31E+06 | 3.00E+07 | 5.42E+06 | 1.45E+08 | 9.65E+07
Best 9.68E+05 | 3.89E+07 | 841E+07 | 1.0SE+06 | 2.02E+06 | LIOE+06 | .I9E+06 | 2.10E+07 | 2.19E+06 | 1.31E+08 | 9.41E+07
Worst L17E+06 | 578E+07 | 1.22E+08 | 1.27E+06 | 2.59E+06 | L.80E+06 | 1.48E+06 | 3.74E+07 | 7.06E+06 | 1.67E+08 | 9.93E+07
Std 9.97E+04 8.99E+06 1.87E+07 1.08E+05 2.63E+05 3.06E+05 1.30E+05 7.43E+06 2.32E+06 1.64E+07 2.28E+06
Median 9.83E+05 | 427E+07 | 9.15E+07 | 1.08E+06 | 2.15E+06 | 1.36E+06 | 1.28E+06 | 3.08E+07 | 6.21E+06 | 1.40E+08 | 9.62E+07
Rank 1 8 10 2 5 4 3 7 6 11 9
C11-F20
Mean 9.41E+05 | 4.84E+07 | 1.05E+08 | 9.57E+05 | 1.68E+06 | 9.68E+05 | 9.89E+05 | 2.91E+07 | 1.21E+07 | 1.34E+08 | 9.67E+07
Best 936E+05 | 426E+07 | 9.20E+07 | 9.55E+05 | L53E+06 | 9.60E+05 | 9.73E+05 | 2.85E+07 | 8.10E+06 | 1.22E+08 | 9.21E+07
Worst 947E+05 | 573E+07 | 125B+08 | 9.58E+05 | L94E+06 | 9.77E+05 | LOOE+06 | 2.98E+07 | 1.87E+07 | 1.45E+08 | 1.00E+08
Std 5.01E+03 6.57E+06 1.48E+07 1.30E+03 2.05E+05 7.68E+03 1.34E+04 5.78E+05 4.85E+06 1.34E+07 3.64E+06
Median 9.41E+05 | 4.68E+07 | 1.02E+08 | 9.58E+05 | 1.63E+06 | 9.67E+05 | 9.91E+05 | 2.91E+07 | 1.08E+07 | 1.34E+08 | 9.73E+07
Rank 1 8 10 2 5 3 4 7 6 11 9
Cl1-F21
Mean 127E+01 | 442E+01 | 6.62E+01 | 1.54E+01 | 2.71E+01 | 2.51E+01 | 2.08E+01 | 8.65E+01 | 3.62E+01 | 9.07E+01 | 8.81E+01
Best 9.97E+00 | 3.71E+01 | 501E+01 | 1.31E+01 | 241E+01 | 223E+01 | 1.91E+01 | 4.28E+01 | 3.25E+01 | 7.89E+01 | 5.16E+01
Worst 1.50E+01 5.17E+01 8.21E+01 1.77E+01 2.84E+01 2.81E+01 2.31E+01 1.26E+02 3.89E+01 1.00E+02 1.07E+02
std 241E+00 | 6.61E+00 | 148E+01 | 221E+00 | 2.10E+00 | 3.18E+00 | 1.96E+00 | 3.59E+01 | 2.96E+00 | 1.13E+01 | 2.70E+01
Median 1.30E+01 | 439E+01 | 6.62E+01 | 1.54E+01 | 2.79E+01 | 2.51E+01 | 2.05E+01 | 8.84E+01 | 3.67E+01 | 9.18E+01 | 9.70E+01
Rank 1 7 8 2 5 4 3 9 6 11 10
Cl11-F22
Mean 161E+01 | 4.19E+01 | 5.58E+01 | 1.86E+01 | 2.96E+01 | 2.97E+01 | 2.36E+01 | 8.86E+01 | 4.18E+01 | 9.20E+01 | 8.02E+01
Best LI15E+01 | 373E+01 | 4.17E+01 | 154E+01 | 2.54E+01 | 2.30E+01 | 232E+01 | 579E+01 | 3.58E+01 | 7.68E+01 | 7.87E+01
Worst 1.96E+01 4.70E+01 6.44E+01 2.10E+01 3.22E+01 3.45E+01 2.39E+01 1.05E+02 4.89E+01 1.02E+02 8.21E+01
Std 420E+00 | 448E+00 | 1.04E+01 | 2.81E+00 | 3.06E+00 | 5.13E+00 | 3.94E-01 | 2.22E+01 | 575E+00 | L.IZE+01 | 1.51E+00
Median 167E+01 | 4.16E+01 | 5.86E+01 | L90E+01 | 3.03E+01 | 3.06E+01 | 236E+01 | 9.58E+01 | 4.11E+01 | 9.47E+01 | 8.01E+01
Rank 1 7 8 2 4 5 3 10 6 11 9
Sumrank |22 153 190 49 124 100 86 184 127 168 187
Meanrank | 1.00E+00 | 6.95E+00 | 8.64E+00 | 2.23E+00 | 5.64E+00 | 4.55E+00 | 3.91E+00 | 8.36E+00 | 5.77E+00 | 7.64E+00 | 8.50E+00
Total rank 1 7 11 2 5 4 3 9 6 8 10
p-value 1.71E-15 1.71E-15 7.1E-15 3.66E-15 3.99E-12 7.1E-15 5.36E-15 8.52E-15 2.54E-15 5.36E-15
Table 18. Evaluation results of the CEC 2011 test suite functions.
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Figure 14. Boxplot diagrams of performance of WaOA and competitor algorithms on the CEC 2011 test suite.
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