Answer Sheet for CHE654 Homework Set #3 (100 Points)

 $\underline{\text{Note}}$: For all problems, submit a copy of your process flow diagram and a copy of your input summary of the process.

21. (25 points) Using ASPEN PLUS to Perform Basic Engineering Calculations, II		
(a) Solubility (mol%) of <i>n</i> -butanol in water = mol%		
(b) Answer: T =°C		
(c) The total number of possible pairs of binary interaction parameters =		
ASPEN PLUS retrieves pairs from its databanks		
The missing pair(s) is/are:		
The required temperature to vaporize 20% of the mixture at 1 atm =°C		
Split fraction =; Flash-2 temperature =°C		
22. (20 points) Simulating Ammonia Production Process with ASPEN PLUS		
(a) Recycle flow rate = lbmol/hr		
Ammonia mass fraction in the purge stream =		
(b) % conversion of Haber reaction at various process feed temperatures:		
Feed Temp (°F) % Conversion		
250 °F		
300 °F		

350 °F

23. (25 points) Simulating Benzene-Toluene Recovery with ASPEN PLUS

	Fractional conversion of the reaction =
	Actual reflux ratio of the column =
	Actual number of stages in the column =
	Purity of benzene in the column overhead = mole%
25	5. (30 points) Solving a Highly Constrained Cumene Production Problem with A+
	Temperature of the condenser in BZ-COL = °F
	Molar ratio of propylene to benzene in the reactor inlet (REAC-IN) =
	Reactor length = feet