Answer Sheet for CHE654 Homework Set #2 (100 points)

The precedence order or computational order is
A complete computational sequence for the entire flowsheet is:
0 points) Determination of Tear Streams and Computation Order, III
he tear streams are:
Computational order:

The locations are:	
A complete computational sequence:	
14. (20 points) Simulating an Allyl-Chi	loride Production Process with ASPEN Plus
Overall fractional conversion of chlorida	orine =
Allyl chloride product purity (mole	%o) =
Remember to submit your A+ .bkp	file.
16. (20 points) Simulation of Benzene	Production Using ASPEN Plus
Flow rate of benzene product stream	= lbmol/hr
Purity of benzene in the product stream	am = mole%
Required area in the heat exchanger	$=$ ft^2
17. (20 points) Producing Cyclohexane	g from Benzene-Water Waste
The purity (mole%) of cyclohexane:	
Before the treatment unit =	%; After the treatment unit =%
The required heat transfer area in the	$e cooler = $ ft^2
The temperature of the organic stream	m:
Before entering the cooler =	°F; After exiting the cooler = °F