## Answer Sheet for CHE654 Homework Set #5 (100 Points)

 $\underline{\underline{Note}}.$  For all problems, submit a copy of your process flow diagram and a copy of your input summary of the process.

| a) Don't forget to submit the process flowsheet and input summar   | y!                |
|--------------------------------------------------------------------|-------------------|
| The required physical property parameters for sugar in IDEAL       | are:              |
|                                                                    |                   |
|                                                                    |                   |
|                                                                    |                   |
| The redundant data are:                                            |                   |
| (b) The mass fraction of sugar from the concentrated liquor of the | second evaporator |
| is                                                                 |                   |
| 35. (20 points) Separation of Compound X, I                        |                   |
| (a) Redundant parameters:                                          |                   |
| Required but missing parameters:                                   |                   |
|                                                                    |                   |
| (b) Thermal diffusivity of column bottom stream =                  | cs                |
| Column bottom flow rate = lbmolhr                                  |                   |
| 38. (20 points) Property Requirements and PCES, I                  |                   |
|                                                                    |                   |

| ( | h)     | Values  | of estimated | parameters |
|---|--------|---------|--------------|------------|
| ١ | $\cup$ | v arucs | or commated  | parameters |

$$V_C = \underline{\hspace{1cm}} m^3/kmol; \ Z_C = \underline{\hspace{1cm}} ; \ CPIG \ at \ 300 \ K = \underline{\hspace{1cm}} J/kmol\text{-}K$$

Vapor pressure at 
$$T_B =$$
\_\_\_\_\_N/m<sup>2</sup>; OMEGA = \_\_\_\_\_

$$DHVLB = \qquad J/kmol; VB = \qquad m^3/kmol$$

(c) At T = 500 °F, 
$$C_p^{IG} =$$
\_\_\_\_\_Btu/lbmol-R

At T = 32 °F, 
$$C_p^{IG} =$$
\_\_\_\_\_Btu/lbmol-R

(d) 
$$Hv^{IG}$$
 (ideal gas enthalpy) of 2-BHA at  $500\,^{\circ}F =$  \_\_\_\_\_\_ Btu/lbmol  $H_L$  (liquid enthalpy) of 2-BHA at  $500\,^{\circ}F =$  \_\_\_\_\_\_ Btu/lbmol

| (e) The UNIQ – I | RKS is a good choice for representi | ing the properties of this system |
|------------------|-------------------------------------|-----------------------------------|
| because          |                                     |                                   |

Two more property methods that are appropriate are:

## 40. (20 points) Extractive Distillation, I

- (a) Mole purity of MCH in the overhead stream of the first column = \_\_\_\_\_ mole%

  Mole purity of toluene in the overhead stream of the second column = \_\_\_\_\_ mole%
- (b) The final value of D/F ratio in the second column = \_\_\_\_\_
- (c) Submit plots of the densities (vapor and liquid) as a function of tray number

## 43. (20 points) Purifying a Wastewater Stream

Condenser temperature in Column 1 = \_\_\_\_\_ °C

Molar distillate to feed ratio in Column 2 = \_\_\_\_\_