Answer Sheet for CHE654 Homework Set #5 (100 points)

31.	(20	points) Double-Effect Evaporator		
	(a)	The required physical property parameters for sugar in IDEAL are		
		The redundant data are:		
32.	(b)	The mass fraction of sugar from the concentrated liquor of the second evaporator = points) Separation of Compound X Redundant parameters:		
	(20			
		Required but missing parameters:		
		Thermal diffusivity of column bottom stream =		_ cs
		Column bottom flow rate =	lbmol/hr	
35.	(30	points) Property Requirements and PCES, I		
	(a)	Required parameters in UNIQ-RKS are:		

(c) Compute CPIG:

CPIG at T =
$$500 \text{ °F} = \underline{\qquad}$$
 Btu/lbmol-R

CPIG at T = 32
$$^{\circ}$$
F = _____ Btu/lbmol-R

(d) Compute enthalpy H:

$$H_{IG}{}^{V}$$
 at $T=500~{}^{\circ}F=$ _______Btu/lbmol

$$H_{IG}{}^{L}$$
 at T = 500 °F = _____ Btu/lbmol

(e) Two more property methods that are appropriate are:

37. (30 points) Extractive Distillation, I

(a) Mole purity of MCH in the overhead stream of the first column = _____ mole%

Mole purity of toluene in the overhead stream of the second column = _____ mole%

(b) The final value of D/F ratio in the second column = _____