CHE654 Design Project #10

Semester 1, 2025

Problem Statement: Aspen Plus Simulation of MTBE Production via Catalytic Etherification of Methanol and Isobutylene

Objective:

To simulate and analyze the **production of methyl tert-butyl ether (MTBE)** through the **catalytic etherification** of **methanol** and **isobutylene** using **Aspen Plus**. The project involves developing a complete process flowsheet, generating **mass and energy balances**, and performing an **economic evaluation** to determine the **financial feasibility** of the process.

Process Description:

1. Feed Preparation:

- o Methanol (MeOH) and isobutylene (IB), often present in C₄ hydrocarbon streams from a refinery or steam cracker, are purified and preheated before entering the reactor.
- Optional: If a mixed C₄ stream is used, a separation unit is required to isolate **isobutylene**.

2. Reaction – Etherification Reactor:

• The etherification occurs in a fixed-bed catalytic reactor or reactive distillation column, often using an acidic ion-exchange resin catalyst.

The primary reaction is:

$$\text{CH}_3\text{OH} + (\text{CH}_3)_2\text{C} = \text{CH}_2 \rightarrow (\text{CH}_3)_3\text{COCH}_3$$

- Side reactions are minimal under optimal conditions, but excess methanol is typically used to drive the reaction to completion.
- o Operating conditions: $\sim 30-100$ °C and $\sim 1-2$ MPa.

3. Separation and Product Purification:

- The reactor effluent is sent to a **separator/distillation unit** to:
 - Recover unreacted methanol and isobutylene for recycle.
 - Purify **MTBE** as the main product.

• Remove any heavy or light by-products.

4. Recycle:

 Unconverted methanol and isobutylene are recycled to improve raw material utilization and reduce waste.

Simulation Tasks in Aspen Plus:

- Model the **reactor** using either **RPlug** (if kinetic data is available) or **RCSTR** with stoichiometric conversion.
- Alternatively, simulate the **reactive distillation** approach if applicable using **RadFrac** with reaction stages.
- Include **separation trains**: distillation columns, flash drums, or absorption systems.
- Design recycle streams for unreacted reactants.
- Perform complete mass and energy balances across all units.
- Integrate heat exchangers for energy recovery and utility savings.

Economic Evaluation:

- Estimate:
 - Capital costs for reactors, distillation columns, compressors, heat exchangers, and other equipment.
 - Operating costs, including raw materials (methanol, isobutylene), utilities, and labor.
 - o **Revenue** based on MTBE market price and production rate.
- Financial analysis includes:
 - Net Present Value (NPV)
 - o Internal Rate of Return (IRR)
 - Payback Period
 - Break-even analysis
- Perform sensitivity analysis on:
 - Feedstock cost
 - Product price

- o Reactor conversion
- o Utility consumption

Expected Outcomes:

- A complete Aspen Plus simulation of MTBE production with all major process units and recycle loops.
- Detailed mass and energy balances for each stream and unit operation.
- Evaluation of **reactor efficiency**, conversion, and selectivity.
- A clear **economic feasibility report**, including profitability metrics and break-even analysis.
- Recommendations for process optimization or scale-up potential.