CHE654 Design Project #1

Semester 1, 2025

Problem Statement

Project Title

Design, Simulation, and Economic Evaluation of Methyl Ethyl Ketone (MEK) Production from n-**Butane via n-Butene Intermediate**

Background

Methyl Ethyl Ketone (MEK) is a valuable industrial solvent used extensively in coatings, adhesives, and chemical synthesis. Its production from petrochemical feedstocks has drawn attention due to increasing demand and profitability. A viable route involves the dehydrogenation of n-butane to produce n-butene, which is subsequently partially oxidized to MEK. This pathway allows for high selectivity and integration into existing petrochemical infrastructure.

Objective

To develop and evaluate a full-scale process for MEK production from n-butane via n-butene as an intermediate using Aspen Plus for process simulation and economic analysis for feasibility assessment.

Scope of Work

1. Process Simulation

- Develop a detailed process flow diagram (PFD) for the conversion of n-butane to MEK via n-butene.
- Simulate the process using **Aspen Plus**, including:
 - Feed preparation
 - Dehydrogenation of n-butane to n-butene
 - Oxidation of n-butene to MEK
 - Separation and purification
 - Recycle and purge systems (if applicable)
- Perform mass and energy balances.

• Conduct sensitivity analysis on temperature, pressure, and conversion rates.

2. Economic Evaluation

- Estimate **capital and operating costs** using Aspen Economic Analyzer or external cost estimation tools.
- Perform financial analysis, including:
 - Net Present Value (NPV)
 - Internal Rate of Return (IRR)
 - Payback Period
 - o Cash Flow Analysis over the project lifetime (e.g., 10–20 years)
- Include assumptions on:
 - Plant capacity (e.g., tons of MEK per year)
 - Equipment cost index
 - Inflation/discount rates
 - o Raw material and utility costs
 - o Product selling price

Process Overview and PFD

Major Process Steps

- 1. Feed Conditioning
 - o n-Butane is compressed and preheated.
- 2. Dehydrogenation Reactor (R-101)
 - o n-Butane → n-Butene + H₂
- 3. Intermediate Separation (V-101)
 - o Removal of hydrogen and light gases.
- 4. Oxidation Reactor (R-102)
 - o n-Butene + O_2 → MEK + Byproducts
- 5. Cooling and Quenching
- 6. MEK Separation and Purification
 - o Distillation column(s) to recover pure MEK.

7. Byproduct Management and Recycle Loops

Frocess Flow Diagram

(This can be redrawn in Aspen or a PFD editor based on units listed above.)

K Aspen Plus Simulation: Required Input Data

1. Components

- n-Butane (C₄H₁₀)
- n-Butene (C₄H₈)
- Oxygen (O₂), Nitrogen (N₂)
- Hydrogen (H₂)
- MEK (C₄H₈O)
- Water (H₂O), CO, CO₂

2. Reactions

a. Dehydrogenation (Endothermic):

C4H10 → C4H8 + H2

- Reactor Type: RPlug
- Kinetics: Power law (literature-based) or assume conversion
- Typical Conditions: 500–600 °C, ~5–10 atm

b. Oxidation (Exothermic):

C4H8 + 1.5O2 → C4H8O (MEK) + H2O

- Side reactions:
 - o Combustion to CO/CO₂
- Reactor Type: RStoic or RPlug
- Temperature: 200–350 °C

3. Feed and Operating Conditions

n-Butane flow: 100–500 kmol/hr

- Air as oxidant: O₂/N₂ (21/79 mol%)
- Heat exchangers for preheating/cooling
- Pressure: 5–20 atm (depending on stage)
- Use **Peng-Robinson EOS** or **SRK** for vapor-phase systems

Economic Analysis Inputs

Capital Costs

- Equipment sizing and costing using Aspen Plus or external references
- Installation factors
- Contingency and indirect costs

Operating Costs

- Raw materials: n-Butane, air, water
- Utilities: Steam, cooling water, electricity
- Labor, maintenance, overhead

Revenue Assumptions

- Market price of MEK (e.g., \$1.5–\$2.0/kg)
- Byproduct credit (e.g., hydrogen)

Financial Parameters

• Project life: 10-20 years

• Discount rate: 8-12%

• Tax rate: 25–30%

• Depreciation: Straight-line or MACRS

ii Expected Deliverables

- 1. Aspen Plus flowsheet with convergence
- 2. Stream and utility tables
- 3. Equipment sizing report
- 4. Economic indicators:
 - Capital investment summary

- o Operating cost breakdown
- o NPV, IRR, Payback Period
- o Annual cash flow chart
- 5. Optimization results (if applicable)
- 6. Sustainability or environmental assessment (optional)

Would you like help building a **starter Aspen Plus file**, **sample cash flow sheet in Excel**, or assistance with **reaction kinetics estimation** from literature?