Answer Sheet for CHE654 Homework Set #1 (100 Points)

1. Mass Balances and Constraints with Elementary Modules, I (20 points	1.	Mass Balances ar	ed Consti	raints with	Elementar	v Modules	I	(20^{-})	points)
--	----	------------------	-----------	-------------	-----------	-----------	---	------------	--------	---

(a) Draw the flowsheet in terms of elementary modules
(b) Is the problem constrained? Circle: Yes or No
How many standard inputs are missing?
How many constraints are present?
List the missing standard input:
(c) Selectivity of Reaction 1: A + B → C =
Fractional conversion of reaction 3: $2C \rightarrow D + F = $
Pure component E feed flow rate into absorber = lbmol/hr
Mole-recovery of light key in column overhead =
Total molar flow rate of streams:
S4: lbmol/hr; S7: lbmol/hr; S8: lbmol/hr

2. Mass Balances and Constraints with Elementary Modules, II (20 po	Mass Bala	ances and Con	straints with	Elementary	Modules .	II	(20	point	3)
---	-----------	---------------	---------------	-------------------	------------------	----	-----	-------	----

•
(a) Draw the flowsheet in terms of elementary modules
(b) Is the problem constrained? Circle: Yes or No
How many standard inputs are missing?
How many constraints are present?
List the missing standard input:
(c) Answer the following questions:
Fractional conversion of Reaction 1 =
Fractional conversion of Reaction 2 =
Flow rate of Component D in the bottom of Flash Vessel = lbmol/hr
Flow rate of Component C in the overhead of Flash Vessel = lbmol/hr
5. Mass Balances and Constraints with Elementary Modules, V (20 points)
(a) There are standard inputs that are missing from the problem.
There are constraints in the problem.
The problem is: □ under-specified □ fully specified □ over-specified

(b) Fill in the following table:

Streams	Compone	ent Flow Rates ((lbmol/hr)	
	A	В	С	Total Flow
S1		0	0	
S2				
S3				
S4				
S5				
S6				150.00

9. Determination of Tear Streams and Computation Order, II (15 points)

The minimum number of tear streams =	
The tear stream locations are:	
A complete computational sequence:	

11. Finding Tear Streams and Computational Sequence Using A+ (15 points)

(a) Output from A+ Control Panel showing tear streams and computational sequence

Determination of Tear Streams and Computation Order, VI (10 po The minimum number of tear streams =	
The minimum number of tear streams =	ints)
The tear stream locations are:	
A complete computational sequence:	