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CHE656 Design Projects 
                         Semester 2, 2023, Part (b) 

   Problem Statement 
 

 
Using Metaheuristic Algorithms to Solve Complex 

Chemical Engineering Optimization Problems 
 

Adapted from http://www.scholarpedia.org/article/Metaheuristic_Optimization 
 

 
Introduction 
 
Most real-world optimizations are highly nonlinear, multimodal, and under various complex 
constraints.  Similarly, many optimization problems found in chemical engineering are very 
complex and combinatorial in nature.  The complexity in these problems arise mainly from two 
inherent factors: (1) the solution space of these problems increases exponentially as the problem 
size increases (hence, the word “combinatorial”, and (2) Many local optima exist and so even when 
a good or optimal solution is found, there is no guarantee and no way of knowing if that solution 
is a global optimum. 
 
Examples of combinatorial optimization problems in chemical engineering are: 
 
 Product scheduling of batch processes 

 
 Optimization of metabolic pathways and diversification of protein coding sequences and 

many other bioengineering problems.  
 

 Optimization problems involving multi-objective functions 
 

 Synthesis of heat exchanger networks 
 

 MILP and MINLP problems in chemical engineering, such as design of batch processes 
 
Metaheuristic optimization algorithms are one class of optimization techniques that espouses a 
"master strategy that guides and modifies other heuristics to produce solutions beyond those that 
are normally generated in a quest for local optimality" (Glover and Laguna 1997).  These 
algorithms are often inspired by the working of nature and have been shown to be able to locate 
global optimum more often than simple heuristics or conventional optimization techniques. 
 
Some of the traditional and well-known metaheuristic optimization algorithms are: 
 

http://www.scholarpedia.org/article/Metaheuristic_Optimization
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1. Simulated Annealing (SA) 
 

2. Genetic Algorithms (GA) 
 

3. Ant Colony Optimization (ACO) 
 

4. Bee Algorithms (BA) 
 

5. Particle Swarm Optimization (PSO) 
 

6. Tabu Search (TS) 
 

For a quick introduction to metaheuristic optimization and brief descriptions of each algorithm, 
see the following link: http://www.scholarpedia.org/article/Metaheuristic_Optimization. 
 
New optimization metaheuristics are continually being developed.  In recent years, there have 
been a flurry of activities in this field, because as mentioned above, optimization problems arise 
in many disciplines, and not just in chemical engineering.  Below is a list of metaheuristics 
collected from https://en.wikipedia.org/wiki/Talk:Metaheuristic/List of Metaheuristics. 

 1952: Robbins and Monro work on stochastic optimization methods. 
 1952: Fermi and Metropolis develop an early form of pattern search as described 

belatedly by Davidon. 
 1954: Barricelli carry out the first simulations of the evolution process and use them on 

general optimization problems. 
 1963: Rastrigin proposes random search. 
 1965: Matyas proposes random optimization. 
 1965: Rechenberg proposes evolution strategy. 
 1965: Nelder and Mead propose a simplex heuristic, which was shown by Powell to 

converge to non-stationary points on some problems. 
 1966: Fogel et al. propose evolutionary programming. 
 1970: Hastings proposes the Metropolis-Hastings algorithm. 
 1970: Cavicchio proposes adaptation of control parameters for an optimizer. 
 1970: Kernighan and Lin propose a graph partitioning method, related to variable-depth 

search and prohibition-based (tabu) search 
 1975: Holland proposes the genetic algorithm. 
 1977: Glover proposes Scatter Search. 
 1978: Mercer and Sampson propose a metaplan for tuning an optimizer's parameters by 

using another optimizer. 
 1980: Smith describes genetic programming. 

http://www.scholarpedia.org/article/Metaheuristic_Optimization
https://en.wikipedia.org/wiki/Talk:Metaheuristic/List
https://en.wikipedia.org/wiki/Ingo_Rechenberg
https://en.wikipedia.org/wiki/John_Nelder
https://en.wikipedia.org/wiki/Lawrence_J._Fogel
https://en.wikipedia.org/wiki/Meta-optimization
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 1983: Kirkpatrick et al. propose simulated annealing. 
 1986: Glover proposes tabu search, first mention of the term metaheuristic. 
 1986: Farmer et al. work on the artificial immune system. 
 1986: Grefenstette proposes another early form of metaplan for tuning an optimizer's 

parameters by using another optimizer. 
 1988: First conference on genetic algorithms is organized at the University of Illinois at 

Urbana-Champaign. 
 1988: Koza registers his first patent on genetic programming. 
 1989: Goldberg publishes a well known book on genetic algorithms. 
 1989: Evolver, the first optimization software using the genetic algorithm. 
 1989: Moscato proposes the memetic algorithm. 
 1991: Interactive evolutionary computation. 
 1992: Dorigo proposes the ant colony algorithm. 
 1993: The journal, Evolutionary Computation, begins publication by the Massachusetts 

Institute of Technology. 
 1993: Fonseca and Fleming propose MOGA for multiobjective optimization. 
 1994: Battiti and Tecchiolli propose Reactive Search Optimization(RSO) principles for 

the online self-tuning of heuristics. 
 1994: Srinivas and Deb propose NSGA for multiobjective optimization. 
 1995: Kennedy and Eberhart propose particle swarm optimization. 
 1995: Wolpert and Macready prove the no free lunch theorems. 
 1996: Mühlenbein and Paaß work on the estimation of distribution algorithm. 
 1996: Hansen and Ostermeier propose CMA-ES. 
 1997: Storn and Price propose differential evolution. 
 1997: Rubinstein proposes the cross entropy method. 
 1999: Taillard and Voss propose POPMUSIC. 
 2001: Geem et al. propose harmony search. 
 2001: Hanseth and Aanestad introduce the Bootstrap Algorithm. 
 2002: Deb et al. propose NSGA-II for multiobjective optimization. 
 2004: Nakrani and Tovey propose bees optimization. 
 2005: Krishnanand and Ghose propose Glowworm swarm optimization. 
 2005: Karaboga proposes Artificial Bee Colony Algorithm (ABC). 
 2005: Duc-Truong Pham et al. proposed Bees Algorithms (BA) 
 2006: Haddad et al. introduces honey-bee mating optimization. 
 2007: Hamed Shah-Hosseini introduces Intelligent Water Drops. 
 2007: Atashpaz-Gargari introduces Imperialist competitive algorithm. 

https://en.wikipedia.org/wiki/Meta-optimization
https://en.wikipedia.org/wiki/John_Koza
https://en.wikipedia.org/wiki/Marco_Dorigo
https://en.wikipedia.org/wiki/Roberto_Battiti
https://en.wikipedia.org/w/index.php?title=POPMUSIC&action=edit&redlink=1
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 2008: Wierstra et al. propose natural evolution strategies based on the natural gradient. 
 2008: Yang introduces firefly algorithm. 
 2008: Mucherino and Seref propose the Monkey Search 
 2009: Ali Husseinzadeh Kashan introduced the League Championship Algorithm (LCA). 
 2009: Kadioglu and Sellmann introduce Hegel and Fichte's dialectic as a local search 

meta-heuristic Dialectic Search. 
 2009: Yang and Deb introduce cuckoo search. 
 2009: Rashedi proposes Gravitational Search Algorithm 
 2009: Josue Cuevas et al. propose Virus Optimization Algorithm 
 2010: Yang develops bat algorithm. 
 2011: Hamed Shah-Hosseini proposes the Galaxy-based Search Algorithm. 
 2011: Tamura and Yasuda propose spiral optimization. 
 2012: Civicioglu proposes Differential Search Algorithm. Matlab code-link has been 

provided in Çivicioglu, P.,(2012). and Matlab File Exchange. 
 2013: Civicioglu proposes Artificial Cooperative Search Algorithm (ACS). 
 2015: Election Algorithm: A new socio-politically inspired 

strategy — Preceding unsigned comment added by 2.187.47.244 (talk) 07:31, 23 June 
2016 (UTC) 

 
However, it has been argued that many of these optimization metaheuristic algorithms are very 
similar and are variations of the same theme. Moreover, many of these proposed metaheuristics 
have never been applied in the real world, so their effectiveness has yet to be validated. A recent 
article titled “Nature Inspired Optimization Algorithms or Simply Variations of Metaheuristics?” 
(Tzanetos A and Dounias G., August 2020) and published in Artificial Intelligence Review gives 
a very comprehensive review on the current status of nature-inspired optimization algorithms 
proposed in the past decade. 

 
Your Assignment 
 
Your design problem Part (b) assignments for this semester (CHE656) will involve the following 
tasks: 
 

1. Each team will be assigned a metaheuristic optimization algorithm. 
 

2. Study references and papers that were given to you by the course instructor your assigned 
metaheuristic. 

 
3. Search the Internet and find more relevant papers on your assigned metaheuristic and read 

them carefully. 
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4. Finally, code the metaheuristics you have been assigned in MATLAB and assess its 
effectiveness in terms of accuracy and required computation time using optimization 
benchmark problems, including some chemical engineering problems, provided in this 
handout. You are not allowed to use off-the-shelf software or functionalities such as the 
Global Search Toolbox in MATLAB to solve problems. However, you may compare the 
solutions from your coding with those found by the software. 

 
Again, you must test your metaheuristic optimization algorithm on the benchmark problems given 
in this document. The benchmark problems are divided into two categories. The first category 
consists of generic or general optimization problems, while the second category consists of 
optimization problems in chemical engineering. Note that optimal solutions or best solutions 
reported are given for some problems but not others in this document. During the course of 
Semester 2, the course instructor will provide you with more solutions.  After that, you are at the 
liberty to choose a few chemical engineering problems to solve.  The only requirement is that these 
chemical engineering problems should be sufficiently complex that the optimum solutions are hard 
to obtain and that conventional optimization techniques fail to give satisfactory answers.  Note that 
you may need to consult optimization textbooks and published papers to find suitable optimization 
problems in chemical engineering. 
 
Finally, a large library of optimization test problems in mathematical formulations can be found 
at this link: http://www.sfu.ca/~ssurjano/optimization.html. 
 
Note that some of the metaheuristic algorithms were designed to solve both unconstrained and 
constrained optimization problems.  However, most of them were not designed to solve 
optimization problems involving discrete or integer variables. Hence, you will need to be creative 
and find ways to modify a given metaheuristic so it can be used to solve all types of test problems 
given, including scheduling problems.  For example, you can incorporate the Penalty Method to 
convert a constrained problem into an unconstrained one. 
 
  

http://www.sfu.ca/%7Essurjano/optimization.html
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Benchmark Problem #1 
 

The design of a compressional and tensional spring involves three design variables: wire 
diameter x1, coil diameter x2, and the length of the coil x3.  This optimization can be written as: 

 

 

 

The best solution for this problem is x* = [0.051690, 0.356750, 11.28126] with f(x*) =0.012665. 
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Benchmark Problem #2 
 

The Ackley function is widely used for testing optimization algorithms. In its two-dimensional 
form, as shown in the plot above, it is characterized by a nearly flat outer region, and a large hole 
at the center. The function poses a risk for optimization algorithms, particularly hill-climbing 
algorithms, to be trapped in one of its many local minima.  
 
Recommended variable values are: a = 20, b = 0.2 and c = 2π. 

 

Solve this optimization problem when: 

1. d = 2 (two-dimensional).  The global minimum is x* = [0, 0] with f(x*) = 0 
 

2. d = 5 
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Benchmark Problem #3 
 

The Cross-in-Tray function has multiple global minima. It is shown here with a smaller domain 
in the second plot, so that its characteristic "cross" will be visible. 
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Benchmark Problem #4 

 

The Michalewicz function has d! local minima, and it is multimodal. The parameter m defines 
the steepness of these valleys and ridges; a larger m leads to a more difficult search. The 
recommended value of m is m = 10. The function's two-dimensional form is shown in the plot 
above. 

 

 

Solve this optimization problem when d = 2, 5, and 10 (with m = 10). 
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Benchmark Problem #5 

 
The following optimization problem is known as Keane’s “bump” function (Andy Keane, 1994) 
which seeks to minimize a very complex objective function with constraints as follows: 
 
 

 
 
 
Solve this problem when m = 2, 5, and 20, i.e. there is a total of three separate objective 
functions to minimize. 
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Benchmark Problem #6 

 
The three-bar truss design problem (Askarzadeh A. 2016) is about minimization of the volume of a 
statistically loaded three-bar truss subject to stress (σ) constraints on each of the truss members 
by adjusting cross sectional areas (x1 and x2). This optimization problem consists of two 
continuous decision variables and three nonlinear inequality constraints as follows: 

 

 Minimization:      f(x) = (2√2x1+x2) × l 

 Subject to g1(x) = √2x1+x2

√2x1
2+2x1x2

P −  σ  ≤  0 

  g2(x) = x2

√2x1
2+2x1x2

P −  σ  ≤  0 

  g3(x) = 1
√2𝑥𝑥2+x1

P −  σ  ≤  0 

 

The problem is usually evaluated on xi ∈ [0,1] for i = 1, 2. In addition, the l, P and σ constants 
are 100 cm, 2 kN/cm2 and 2 kN/cm2, respectively. The figure below shows a schematic of three-
bar truss design problem. 
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Benchmark Problem #7 

The tension/compression spring design problem (Askarzadeh A. 2016) as shown in the figure below is 
about the minimization of the weight of a tension/compression spring. 

 

 
There are three continuous decision variables, namely the wire diameter (d or x1), the mean coil diameter 
(D or x2), and the number of active coils (P or x3). This problem has one linear and three nonlinear 
inequality constraints.  
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Benchmark Problem #8 

The welded beam design problem (Askarzadeh A. 2016) is about the minimization of the cost of a 
welded beam. There are four continuous design variables with two linear and five nonlinear 
inequality constraints based on shear stress (τ), bending stress in the beam (σ), bucking load on 
the bar (Pb), end deflection of the beam (δ), and side constraints. The figure below shows a 
schematic of welded beam design problem. The decision variables are x1 or h, x2 or l, x3 or t, and 
x4 or b. 

 

Minimization:     f(x) = 1.10471x1
2x2 + 0.04811x3x4(14 + x2)   

Subject to      g1(x) = τ(x) – τmax ≤ 0 

  g2(x) = σ(x)  −  σmax ≤ 0 

g3(x) = 𝑥𝑥1  −  𝑥𝑥4 ≤ 0 

g4(x) = 0.10471x1
2 + 0.04811x3x4(14 + x2) −  5 ≤ 0 

g5(x) = 0.125 −  x1 ≤ 0 

g6(x) = δ(x)  −  δmax ≤ 0 

g7(x) = P −  Pc(x) ≤ 0 

where 
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Chemical Engineering Benchmark Problems 

 

ChE Problem #1: 

This problem is a heat exchanger network design. The objective is to find the minimum area of 
three heat exchangers as shown in the figure below. They are responsible for heating a cold 
stream whose heat capacity flow rate is 100,000 kW/°F from 100 to 500°F. The overall 
coefficient of Heatex1, Heatex2 and Heatex3 are 120, 80 and 40 kW/ft2°F, respectively. 

 

 

 
This problem can be formulated as follows: 
 

Minimization:      x1 + x2 + x3              

     100000(x4 – 100) = 120x1(300 – x4) 

       100000(x5 – x4) = 80x2(400 – x5) 

       100000(500 – x5) = 40x3(600 – 500) 

                  (0, 0, 0, 100, 100) ≤ x ≤ (15834, 36250, 10000, 300, 400) 
 

The global optimum is x* = (579.306743, 1359.971266, 5109.971263, 182.017600, 295.601150) 
with f(x*) = 7049.249. 
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ChE Problem #2: 

This is a reactor sequence design with capital cost constraints. Considering the reaction sequence 
A→B→C and assuming first order kinetics for both reactions, design a sequence of two reactors 
such that the concentration of B in the exit stream of the second reactor (CB2) is maximized and 
the investment cost does not exceed a given upper bound. 

 

 

 

 
where k1 = 0.09755988 s-1, k2 = 0.99k1 s-1, k3 = 0.0391908 s-1 and k4 = 0.9k3 s-1. Let V1, V2 be the 
residence times for the first and second reactor respectively. Then, the reactor design problem is 
formulated as a nonlinear programming problem: 
 

:      x4               

     (x1 – 1) + k1x1x5 = 0 

         (x2 – x1) + k2x2x6 = 0 

       (x3 + x1 – 1) + k3x3x5 = 0 

       (x4 – x3 + x2 – x1) + k4x4x6 = 0 

        x50.5 + x60.5 ≤ 4 

        0 ≤ x ≤ (1, 1, 1, 1, 16, 16) 
  

The first four constraints involve the reaction kinetics of all reactions in both reactors. Assuming 
that the capital cost of a reactor is proportional to the square root of its residence time, this 
capital cost constraint is the fifth constraint. The global optimum is at x* = (0.771462, 0.516997, 
0.204234, 0.388812, 3.036504, 5.096052) with f(x*) = 0.388812. 
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ChE Problem #3: 

This is the design of a three-stage process system with recycle which was improved by 
Stephanopoulos and Westerberg from two-stages example taken from McGalliard’s thesis.  
 

 

 

Minimization:        x10.6 + x20.6 + x30.4 – 4x3 + 2x4 + 5x5 – x6          

Subject to       −3x1 + x2 – 3x4 = 0 

        −2x2 + x3 – 2x5 = 0 

      4x4 – x6 = 0 

        x1 + 2x4 ≤ 4 

        x2 + x5 ≤ 4 

        x3 + x6 ≤ 6 

        0 ≤ x ≤ (3, 4, 4, 2, 2, 6) 

 

The global optimum is at x* = (0.166667, 2, 4, 0.5, 0, 2) with f(x*) = −13.401904. 
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ChE Problem #4: 

This problem is called “Alkylation Process Optimization”. The original was proposed by 
Bracken and McCoarmick, and modified by Liebman, Quesada and Grossmann. It is a model for 
optimization of the operation of a chemical process common in the petroleum industry. The 
model seeks to determine the optimum set of operating conditions for the process, a profit 
function to be maximized and a set of starting conditions. It is a fairly large problem. 

 

 

Minimization:    5.04x1 + 0.035x2 + 10x3 + 3.36x5 – 0.063x4x7    

Subject to x1 = 1.22x4 – x5 

   x9 + 0.222x10 = 35.82 

 3x7 – x10 = 133 

   x7 = 86.35 + 1.098x8 – 0.038x82 + 0.325(x6 – 89) 

   x4x9 + 1000x3 = 98000x3/x6 

   x2 + x5 = x1x8 

   1.12 + 0.13167x8 – 0.00667x82 ≥ x4/x8 

(1, 1, 0, 1, 85, 90, 3, 1.2, 145) ≤ x ≤ (2000, 16000, 120, 5000, 2000, 93, 95, 12, 4, 162) 

The global optimum is at x* = (1728.310416, 16000, 98.133457, 3055.992144, 2000, 90.618812, 
94.189777, 10.414796, 2.615609, 149.569330) with f(x*) = −1161.336694. 


	However, it has been argued that many of these optimization metaheuristic algorithms are very similar and are variations of the same theme. Moreover, many of these proposed metaheuristics have never been applied in the real world, so their effectivene...

