Process Simulation with ASPEN Plus

7505 Course Notes

Section 2: Mass-Balance Only Using

Elementary Modules with Standard Input

These course materials are applicable to Version 14 of ASPEN Plus ASPEN PlusTM is a trademark of Aspen Technology, Inc., Bedford, MA, U.S.A.

1

Mass-Balance Only in ASPEN Plus

- Mass-balance only is ONLY possible if "Elementary Modules" or models are used.
- □ There are 4 types of elementary modules which can represent practically every piece of equipment in a chemical process.
 - 1. Mixer (MIXER)
 - 2. Flow Splitter (FSPLIT)
 - 3. Component Separator (SEP)
 - 4. Reactor (RSTOIC)
- Each elementary module has its own standard input

Elementary Module – The Mixer

$$N_S^{out} = \sum_{j=1}^J N_s^j \qquad s = 1, N$$

Standard specification: None, full information about the input

Elementary Module – The Flow Splitter

 N_s^{j} = mole flow of species s in stream j

$$N_S^j = t^j N_s^{IN} \quad \forall \quad s = 1, N$$

Standard specification: split fraction t^j , j = 1, 2, ..., J-1

Notice that we always leave one stream unspecified because $\sum_{j=1}^{J} t^j = 1$

4

The Flow Splitter – Example

 $N_{A}^{1} = 0.2 N_{A}^{IN}$ $N_{A}^{2} = 0.3 N_{A}^{IN}$ $N_{B}^{1} = 0.2 N_{B}^{IN}$ $N_{B}^{2} = 0.3 N_{B}^{IN}$

Elementary Module – The Component Separator

 N_s^j = mole flow of species s in stream j

$$N_s^j = t_s^j + N_s^{IN} \quad \forall \ j = 1, 2, \dots, J, s = 1, 2, \dots, N$$

Standard specification: split fraction t_s^j , j = 1, 2, ..., J-1 for all s = 1, N

$$\sum_{j=1}^{J} t_{z}^{j} = 1$$
 Leave one stream unspecified too

The Component Separator – Example

7

Elementary Module – The Reactor

where $\sigma_{s,i}$ = stoichiometric coefficient of species s in reaction i

 x_i = fractional conversion of reaction *i* based on a key component

R = the total number of reactions

Assumption: All reactions take place simultaneously (or in parallel).

The Reactor – Example (Parallel Reactions)

Parallel Reactions:

$A + B \rightarrow C$	1 st reaction conversion=?
$A \rightarrow D + E$	2 nd reaction conversion=?

Overall conversion based on A is 80% with a selectivity of 60% for Reaction 1.

 1^{st} reaction conversion = $0.80 \times 0.60 = 0.48$

 $2^{nd} \text{ reaction conversion} = 0.80 \times 0.40 = 0.32$ 0.80 which is the total conversion $N_{A}^{OUT} = N_{A}^{IN} - (0.48 + 0.32)N_{A}^{IN} \qquad N_{D}^{OUT} = N_{D}^{IN} + 0.32N_{A}^{IN}$ $N_{B}^{OUT} = N_{B}^{IN} - 0.48N_{B}^{IN} \qquad N_{E}^{OUT} = N_{E}^{IN} + 0.32N_{E}^{IN}$

 $N_{C}^{OUT} = N_{C}^{IN} + 0.48 N_{C}^{IN}$

The Reactor – Example (Parallel + Serial Reactions)

Reactions in series:

 $A + B \to C$ $A \to D + E$ Parallel reactions

 $C \rightarrow F + G$ 3rd reaction conversion=75%

 $N_{C}^{OUT} = N_{C}^{OUT,1} - 0.75 N_{C}^{OUT,1}$ and $N_{C}^{OUT,1} = N_{C}^{IN} + 0.48 N_{A}^{IN}$

Example of a Process with Elementary Modules

Elementary Modules in ASPEN Plus

□ Model/Module Name vs. Block ID

RSTOIC is the model name in ASPEN Plus which cannot be changed.

REACTOR is a Block ID specified by the user and can be changed to anything.

A+ Example of a Process with Elementary Modules

<u>Our task</u>: Perform a mass balance calculation of this process in A+ using standard input given for each elementary module.

First, learn to turn off energy balance by visiting Simulation \rightarrow Setup \rightarrow Calculation Options \rightarrow Calculation and uncheck "Perform heat balance calculations"

Minimum Required Input Data for an A+ Model

Second, we must know the minimum required input data for a basic A+ model:

- 1. Process flowsheet, i.e. connectivity of all unit operation modules
- 2. All chemical species (chemical components) present in the model
- 3. Process feed data: Total flow rate(s) and its/their composition(s) or individual component flow rates
- 4. Operating conditions of all unit operation modules
- 5. Thermodynamic package/method, e.g. ideal-gas/ideal-liquid, equations of state, etc. (can enter a dummy method if energy balance is turned off)

A+ Example with Elementary Modules (Cont'd)

(dummy, because we are not doing energy balance)

Introduction to ASPEN PLUS User Interface

GUI consists of 2 main components

1. Graphics

- Flowsheet graphics
- Results plots
- Process flow diagrams (PFD) generation
- 2. Forms and Menus

- Help you enter process data, such as components, properties, unit operations, and other specifications to define your problem

Mass-Balance Only: A+ Model

Mass-Balance Only: Stream Summary/Table

🐼 🔚 🕫 - 🤁 - 🚭 🚺 🔝	▶ Ⅲ	🚺 🔻 Mass-Balar	nce Only A+ Mod	el - Minim	um Required Input.	bkp - Aspen Plus V	14 - aspenONE	Report				- 8
File Home Economics	Batc	h Dynamics	Plant Data	Equation	Oriented View	Customize	Resources	Stream Summary	Sec	arch Aspen Knowled	lge 🛛 🔎 🗠	(7)
All Save Save as New Show Child Hierarchy Streams Stream Group	Full Save Carbonic Control	• 🔀 Save as New ard Change Template 🕞	General Options I Pl Stream Summar	otal ubstreams nases y Options	Image: Mole Image: Mole Image: Mole <th>Mole Mass Selec Propert</th> <th>t Display C ies Options Property Sets</th> <th>Calculation Options</th> <th>d to Excel/ASW d to Flowsheet by All Report</th> <th></th> <th></th> <th></th>	Mole Mass Selec Propert	t Display C ies Options Property Sets	Calculation Options	d to Excel/ASW d to Flowsheet by All Report			
Simulation <	Capita	I:USD Utilities	:USD/Year		Energy Saving	s:MW (_%)	Exchangers - Ur	nknown: 0 OK: 0	Risk: 0 💽	CO2e Scope 1 0 🕨	Φ Σ
All Items 🔹	Mair	Flowsheet × Res	ults Summary - S	treams (A	$ \times +$							
□ Reactions ▲ ▷ □ Convergence	Mat	terial Heat Load	Work Pow	er Vol.9	% Curves Wt. % C	Curves Petroleur	n Polymers :	Solids				i
 Flowsheeting Options Model Analysis Tools 				Units	1 •	2 •	3	4 •	5 -	6 -	7 -	-
 EO Configuration Results Summary 	•	Enthalpy Flow		cal/sec	-2.9885e+34							
Run Status		Average MW			15.0147	18.3616	22.8559	24.5714	18.2974	24.5714	24.5714	
Streams		 Mole Flows 		kmo	300	461.696	370.91	269.493	101.418	107.797	161.696	
Qperating Costs	Þ	H2		kmol	150	170.222	34.0445	33.704	0.340445	13.4816	20.2224	
CO2 Emissions		N2		kmol	150	288.666	243.273	231.109	12.1636	92.4437	138.666	
🧭 Models 🛛 🗉		NH3		kmol	0	2.80779	93.5931	4.67965	88.9134	1.87186	2.80779	
🤯 Equipment		- Mole Fraction	5									
Dynamic Configuration	•	H2			0.5	0.36869	0.0917863	0.125065	0.00335686	0.125065	0.125065	
Plant Data	•	N2			0.5	0.625229	0.65588	0.857571	0.119936	0.857571	0.857571	=
📕 Properties	>	NH3			0	0.00608148	0.252333	0.0173647	0.876707	0.0173647	0.0173647	
	•	- Mass Flows		kg/hr	4504.4	8477.49	8477.49	6621.82	1855.68	2648.73	3973.09	
Safety Analysis		H2		kg/hr	302.382	343.148	68.6296	67.9433	0.686296	27.1773	40.766	
M- Surety Analysis		N2		kg/hr	4202.02	8086.53	6814.92	6474.17	340.746	2589.67	3884.5	
🔊 Energy Analysis	•	NH3		kg/hr	0	47.8183	1593.94	79.6971	1514.25	31.8789	47.8183	-
*												•
Results Available Check Status										100%	6 \varTheta — 🕛 –	
	Ø	<i>i</i>	Q	-		💬 🤹	R* 🗧	USD ^	ê 6 🗞	🐔 🍋 🕼	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	ē