Process Simulation with ASPEN Plus

7505 Course Notes

Section 7: Putting It All Together:

Simulating Complex Chemical Processes

These course materials are applicable to Version 14 of ASPEN Plus ASPEN PlusTM is a trademark of Aspen Technology, Inc., Bedford, MA, U.S.A.

Problem Statement with Input Data

The compound *n*-octane can be produced from ethylene (C_2H_4) and *i*-butane (C_4H_{10}) in an adiabatic stoichiometric reactor ($\Delta P = 2$ psia) according to the reaction:

 $2C_2H_4 + i-C_4H_{10} \rightarrow C_8H_{18}$

Temperatures and pressures are given for some of the streams. Notice that this process produces two grades of *n*-octane, namely low-grade and high-grade octane. The low-grade is recovered as the bottom of the flash which has a lower purity ($\geq 95 \text{ mol}\%$) than the high-grade ($\geq 99 \text{ mol}\%$) produced from the bottom of the distillation column.

Chemical Process #1

n-Octane Production Process

Problem Statement with Input Data (Cont'd)

The fresh feed contains in kmol/hr 1.0 nitrogen (N₂), 100 ethylene (C₂H₄), 3.0 *n*-butane (n-C₄H₁₀), and 50 *i*-butane (i-C₄H₁₀) at 30°C and 20 psia.

The following data are also known about the process:

- 1. The flash vessel is isobaric (i.e. inlet and outlet pressures are equal or $\Delta P = 0$ with cooling to condense enough *n*-octane.)
- 2. The pressure drops across the heat exchanger, the heater, and the mixer are considered negligible.
- 3. The compressor is isentropic, and the purge takes out 5% of the column overhead.

Problem Statement with Input Data (Cont'd)

4. The column (short-cut model) operates at 3.0 times the minimum reflux ratio and recovers 99.50 mol% *n*-butane in the overhead and 99.90 mol% *n*-octane in the bottom.

5. The condenser of the column is partial with all vapor distillate and its pressure is 15 psia. The pressure in the reboiler is 16 psia.

6. The process must produce 20 kmol/hr of low-grade *n*-octane from the flash vessel.

7. The conversion of the reaction is 90 mole% based on ethylene.

Use ASPEN Plus to simulate this *n*-octane production process. For properties, use the Peng-Robinson equation of state.

Process Flow Diagram from A+ for Process #1

Important Stream Results for Process #1

Materia	Heat	Load	Work	Power	Vol.% Cu	rves	Wt. % (Curves	Petrole	um	Polymers	Solids
						U	nits	LO	W-C8	•	HIGH-C8	•
•	• Mole Fle	ows			km	ol/hr			(20) 30.	8988
• -	• Mole Fr	actions								\sim		
	N2								0.000841	952	5.32341	.e-08
•	ETH	/LENE							0.00145	436	1.83353	e-06
•	I-BU	TANE							0.00347	028	0.00066	5335
	N-BL	JTANE							0.0429	402	0.006	3301
	N-O	CTANE							0.951	293	0.99	3003
•	• Mass Flo	ows			kg/	'hr			2228	8.58	351	.7.47
	Mass Fr	actions										

One Design-Spec in Process #1

										Flash	ı vap	oor fraction		
/	Mai	n Flow	/sh	eet × REAG	CTOR (RSto	pic) × Co	ontrol F	anel ×	Converg	ence X)S-1	- Results >	׼	
	Re	sults	C	Status										
				Status						/				
			١	/ariable	In	nitial value		Fin	al value	4	1	Units		
	►	MAN	IPL	ILATED		0.83	9096		0.839	376				
		C8FL0	NC	1		20.	0348		\sim	20 KMO	L/HF	२		
				()					<i>x</i>	_			
				Summary	Balance	Phase Equ	uilibriur	n Utilit	ty Usage	Status				
								\frown						
				Outlet temp	erature			92.8463	C		•			
				Outlet press	ure			18	psia		•			
				Fluid phase v	vapor fracti	ion (Mole)	().839376						
				Fluid phase	vapor fracti	ion (Mass)	(0.755206						
				Heat duty				-2.11685	Gcal/hr		•			
				Net duty				-2.11685	Gcal/hr		•			
				1st liquid / T	otal liquid			1						
				Pressure dro	р			0	psia		•		8	

Chemical Process #2

Acetone Production Process

Problem Statement with Input Data

A process to produce acetone by dehydrogenation of isopropyl alcohol (IPA) is to be simulated using ASPEN Plus. Fresh IPA with a small amount of water is fed to a preheater and then to a continuous stirred tank reactor in which the following endodermic reaction occurs:

$$(CH_3)_2CHOH \rightarrow (CH_3)_2CO + H_2$$

A flash vessel is used to purge the hydrogen product from the reactor effluent, while the liquid goes into a distillation column which separates out acetone as a product in the overhead. A second distillation column is required to separate water from unreacted IPA so that the alcohol can be recycled back to the reactor via a high-pressure pump.

Problem Statement with Input Data (Cont'd)

The following data and operating conditions are available:

Feed stream:	
Composition (mole fractions))
IPA	0.85
Water	0.15
Total Flow (lbmol/hr)	500.0
Temperature (°F)	100.0
Pressure (psia)	30.0
Recycle Pump:	
Outlet pressure (psia)	30.0
Feed Preheater:	
Outlet temperature (°F)	550.0
Pressure drop (psi)	3.0
· · · · /	

Problem Statement with Input Data (Cont'd)

Reactor:	
Reactor type	Adiabatic CSTR
Reaction (gas phase)	$(CH_3)_2CHOH \rightarrow (CH_3)_2CO + H_2$
Reactor volume (ft ³)	2500
Phase calculations	Vapor-liquid (because the reaction is endothermic and may result in some condensation)
Kinetics: 1 st -order power- law reaction	$r_{IPA} = 5.25 \times 10^5 e^{-15000/RT} [(CH_3)_2 CHOH]$
	where E is in the unit of Btu/lbmol.
Pressure drop (psi), DP	Based on the following empirical correlation
	$DP = \frac{2.85 \times 10^6 \phi^{3/2} x_{ACETONE}^2}{T}$
ſ	where $\phi = \text{mass-density} (\text{lbm/ft}^3)$
Stream REAC-IN \prec	$x_{ACETONE}$ = mole fraction of acetone
Ĺ	- $T = $ temperature

Problem Statement with Input Data (Cont'd)

<u>Flash</u> : Heat loss Pressure drop	Negligible Negligible
Column-1 (rigorous model):	
Number of stages	50
Feed tray location	25
Reflux ratio (molar basis)	3.0
Distillate to feed ratio (mole basis)	0.60
Pressure in condenser (psia)	15.0
Pressure in reboiler (psia)	16.0
Condenser	Partial with both vapor and liquid distillates
Design target	Loss of acetone from the column as vapor distillate is limited to exactly 10 lbmol/hr.

Problem Statement with Input Data (Cont'd)

Column-2 (rigorous model):	
Number of stages	30
Feed tray location	15
Reflux ratio (molar basis)	3.0
Pressure in condenser (psia)	12.0
Pressure in reboiler (psia)	13.0
Condenser	Total
Design target	Concentration of IPA in the wastewater stream
	(Stream WATER) must be limited to 1.0
	mole%

Use NRTL-RK as the property method in your simulation while declaring hydrogen as Henry's Law component. The reason why NRTL-RK must be used is that IPA, water, and acetone form a highly nonideal solution. In fact, IPA and water form an azeotrope at 31.7 mol% IPA, but luckily the water concentration in Stream COL-2-IN with lots of acetone is higher than this number so we are able to separate water to very high purity.

Problem Statement with Input Data (Cont'd)

Notes: To converge this flowsheet and obtain a correct solution, correct property parameters must be used. Be sure to visit Methods \rightarrow Parameters \rightarrow Binary Interaction \rightarrow NRTL-1 menu and see that 3 pairs of binary interaction parameters are retrieved from APV140 VLE-IG Databank. More importantly, make sure that you visit HENRY-1 menu too and select all 3 databanks (APV140 BINARY, APV140 ENRTL-RK APV140 HENRY-AP) in the Databanks sheet so that Henry's Law constants between H₂-water and H₂-acetone are retrieved as well.

Answer the following questions:

- 1. ΔP across the reactor = <u>1.74</u> psia
- 2. % conversion of the reaction based on IPA = 95.56 %
- 3. Temperature of the condenser in Column-1 = $\underline{133.69}$ °F

4. Product purity (mole%) of acetone in liquid distillate of Column-1 = $\frac{97.10}{97.10}$ %

Important Stream Results for Process #2

Material	Heat	Load	Vol.% Curves	Wt. %	Curves	Petroleum	Polymers	Solid	s	
						Units	ACET-VAP	•	ACETONE	•
•	WAT	ER			lbmol/h	٦r	0.27	0521	4.36	5061
•	H2				lbmol/h	٦r	0.09	5334	0.00055	6666
•	IPA				lbmol/h	hr	0.000243	3301	0.00592	2749
>	ACET	ONE			lbmol/h	nr	5	10	145	.999
-	Mole Fra	actions			From	design-spec		\smile		
•	WAT	ER			in	Column 1	0.026	0942	0.0289	9999
•	H2						0.00929	9229	3.70203	e-06
>	IPA						2.34686	e-05	3.94203	e-05
•	ACET	ONE					0.9	5459	0.970	957

Important Stream Results for Process #2

		Units	LP-RECYC 🔻	WATER •
	Average MW		54.2774	18.4361
•	+ Mole Flows	lbmol/hr	64.7805	42.375
	 Mole Fractions 			
	WATER		0.104027	0.99
	H2		0	0
	IPA		0.181167	0.01
	ACETONE		0.714806	3.72055e-12
	+ Mass Flows	lb/hr	3516.12	781.23

in Column 2

Calculator Block Result for Process #2

Mai	n Flows	sheet $ imes$	Contr	ol Panel × C-1	- Result	s × Re	ACTOR (RCS	FR) - Stream	Resu	lts (Boundary) $ imes$
Ma	terial	Heat	Load	Vol.% Curves	Wt. %	Curves	Petroleum	Polymers	Solid	s
							Units	REACT-IN	•	REAC-OUT -
	Strea	ım Class						CONVEN		CONVEN
	Maxi	mum Re	elative Er	ror						9.64732e-05
	Cost	Flow				\$/hr				
Þ	– MIX	ED Subs	stream							
	P	hase						Vapor Phase	e	
	Т	empera	ture			F			550	119.496
	P	ressure				psia			27	25.2635
	Ν	Aolar Va	por Frac	tion					1	0.727177
	Ν	Aolar Lic	quid Frac	tion					0	0.272823

Chemical Process #3

Cumene Production Process (Highly Constrained)

Problem Statement with Input Data

A wastewater stream with 50 mol% benzene is to be treated to remove impurities so it could be used to produce cumene (isopropyl benzene). The wastewater first enters a flash to remove light gases. The liquid from the flash then enters a distillation column to separate out high-purity benzene in the bottom stream. After that, this liquid benzene is pre-heated to a super-heated state and combined with propylene (100% pure at 200 °F and 14.7 psia). Benzene and propylene are then allowed to react to form cumene in an isothermal plug flow reactor. The reactor effluent is cooled in a heat exchanger by the liquid distillate from the first column. A second distillation column is used to purify cumene which exits as the bottom product. The cumene reaction is as follows:

 $C_3H_6 + C_6H_6 \rightarrow C_9H_{12}$ (gas phase reaction) propylene benzene cumene

20

Problem Statement with Input Data (Cont'd)

The following additional data are known about the process:

- 1. The temperature of the wastewater feed is 100 °F and its pressure is 20 psia. Its composition is: 15% acetone, 50% benzene, 15% methanol, 10% methane, 6% acetylene (C_2H_2), 3% nitrogen, and 1% oxygen (all molar basis), and the total flow rate is 200 lbmol/hr.
- 2. The wastewater stream is flashed at 0 °F with negligible pressure drop.
- 3. The first column (BZ-COL) has 20 theoretical stages, which include a partial condenser ($P_{condenser} = 14$ psia) and a reboiler ($P_{reboiler} = 15$ psia). The feed tray location is 15. The column operates with a molar reflux ratio of 3 and takes out 90 lbmol/hr in the bottom stream.
- 4. The pre-heater vaporizes the benzene stream and superheats it to 30 °F above its dew-point temperature. The pressure drop inside the pre-heater is 0.3 psia.
- 5. The waste gas stream (WAST-GAS) has a total flow rate of 37.0 lbmol/hr.
- 6. The plug flow reactor has a diameter of 1.2 ft with negligible pressure drop. The kinetics for the cumene reaction follows the power-law expression and is given as:

Problem Statement with Input Data (Cont'd)

$$r_{propylene} = kC_{propylene}C_{benzene}$$

$$k = 1.5 \times 10^4 \exp\left(\frac{-5500}{RT}\right)$$

where the unit of the activation energy is Btu/lbmol and C_i is molar concentration. The conversion of the cumene reaction is maintained at 99%.

- 7. The plug flow reactor is operated isothermally at the same temperature as that of the inlet to the reactor (REAC-IN). Note that although the cumene reaction occurs in the gas phase, you must specify Valid Phases = Vapor-Liquid in RPLUG because the generation of cumene may cause liquid to form inside the reactor.
- 8. The exit temperature of the cold side in the cooler is 100 °F. This cooler has negligible pressure drop.

Problem Statement with Input Data (Cont'd)

- 9. The cumene column (CUM-COL) consists of 10 theoretical stages, which include a total condenser ($P_{condenser} = 14 \text{ psia}$) and a reboiler ($P_{reboiler} = 14.5 \text{ psia}$). The feed tray location is 5. The column takes out 20 mol% of the feed as the overhead distillate and operates with a molar reflux ratio of 3.
- 10. The cumene product stream from the second column must contain a purity of 99.5 mole% cumene (product spec).

Answer the following questions:

- 1. Temperature of the condenser in BZ-COL = 6.92 °F
- 2. Molar ratio of propylene to benzene in the reactor inlet (REAC-IN) = 1.194
- 3. Reactor length = 11.93 feet

Important Stream Results for Process #3

Material	Heat	Load	Vol.% Curves	Wt. %	Curves	Petroleum	Polymers	Solids
						Units	CUMENE	•
•	ACET	ONE					3.6668	e-07
	BENZ	ZENE					0.0049	9962
E	METH	HANOL					2.1539	e-08
•	CH4						4.83842	e-28
•	C2H2	2					5.72433	e-21
•	N2							0
▶	02							0
•	PRO	PYLEN					3.25845	e-09
•	CUM	ENE).995

Important Design-Spec Results for Process #3

	Variable	Initial value	Final va	alue	Ur	nits	
►	► MANIPULATED 11.9		(11.9311 FT			
	BZOUT 0.872			0.872467	LBMOL/HR		
	BZIN 86			86.5936	lbmol/hr		
			REACT	-IN 🔻	REAC-OUT	,	
	- Mole Flows	lbm	ol/hr		193.411	107.6	59
	ACETONE		lbmol/hr		3.39934	3.3993	34
	BENZENE	lbm	lbmol/hr		86.5936	0.872467	
	METHANOL	lbm	ol/hr	0.0	0709585	0.0070958	85
	CH4	lbm	lbmol/hr		7.49165e-12		12
	C2H2	lbm	ol/hr	2.42	446e-09	2.42446e-0	09
	N2		ol/hr	1.38	729e-22	1.38729e-2	22
	02		lbmol/hr		463e-21	2.36463e-21	
	PROPYLEN	lbm	ol/hr		103.411	17.689	97

Important Design-Spec Results for Process #3

	Variable	Initial value	Final value	Units
• •	1ANIPULATED	100	103.411	BMOL/HR
XCUMENE		0.999992	0.995	
			Units	CUMENE -
Þ	METHANOL			2.1539e-08
Þ	CH4			4.83842e-28
Þ.	C2H2			5.72433e-21
Þ	N2			0
Þ	O2			0
▶.	PROPYLEN			3.25845e-09
Þ	CUMENE			0.995
Þ.	+ Mass Flows		lb/hr	10336.8

Important Design-Spec Results for Process #3

	Variable	Initial value	Final value	Units
	MANIPULATED	0.05	0.0470778	
WASTEGAS 37.		37.2239	37 LBMOL/HR	
			Units	WAST-GAS 🗸
>	Average MW			22.0276
•	- Mole Flows		lbmol/hr	37
>	ACETONE		lbmol/hr	0.277271
>	BENZENE		lbmol/hr	0.185697
>	METHANOL		lbmol/hr	0.0711465
þ	CH4		lbmol/hr	19.1228
•	C2H2		lbmol/hr	9.34333
Þ	N2		lbmol/hr	5.99987
1	02		lbmol/hr	1.99984