CHE654 Design Project #6

Semester 1, 2025

Problem Statement

Project Title

Simulation and Economic Analysis of n-Butanol Production via the Oxo Process from **Propylene Using Aspen Plus**

Background

n-Butanol (C₄H₉OH) is an important industrial alcohol used as a solvent, chemical intermediate, and in plasticizers and coatings. A common industrial route for its production is the Oxo process (hydroformylation), where propylene reacts with synthesis gas (CO + H₂) to form butyraldehyde, which is then hydrogenated to *n*-butanol.

This project focuses on designing and simulating the production of n-butanol from propylene using the oxo process in Aspen Plus, followed by an economic evaluation of the process using major financial indicators to determine its viability.

Objectives

- 1. Simulate the production of n-butanol from propylene using the Oxo process in Aspen Plus.
- 2. Develop a comprehensive process flow diagram (PFD) with key unit operations.
- 3. Conduct mass and energy balances for each unit operation.
- 4. Estimate raw material and utility requirements.
- 5. Perform a detailed **economic analysis**, including:
 - o Internal Rate of Return (IRR)
 - Net Present Value (NPV)
 - Payback Period
 - Annual Cash Flow
- 6. Evaluate the **technical and financial feasibility** of the proposed process.

Process Chemistry

1. Hydroformylation (Oxo Reaction)

Propylene + CO + H₂ → Butyraldehydes (n- and iso-)

- Catalyst: Rhodium- or cobalt-based homogeneous catalyst
- Conditions: Moderate temperature (100–150°C), high pressure (20–40 bar)

2. Hydrogenation of Aldehydes

Butyraldehyde + $H_2 \rightarrow n$ -Butanol

 $\text{CH}_3\text{CH}_2\text{CH}_2\text{CHO} + \text{H}_2 \rightarrow \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{OH}$

- Catalyst: Nickel or copper-based
 Conditions: 120–200°C, 10–20 bar
- Conceptual Process Flow Diagram (PFD)

Aspen Plus Simulation Setup

1. Thermodynamic Model

- NRTL or UNIQUAC for liquid-liquid and vapor-liquid equilibrium
- Peng-Robinson or SRK for high-pressure vapor-phase components

2. Component List

Component	Formula	Role
Propylene	C_3H_6	Feed
Carbon Monoxide	CO	Feed (syngas)
Hydrogen	H_2	Feed (syngas)
<i>n</i> -Butyraldehyde	C_4H_8O	Intermediate
Isobutyraldehyde	C_4H_8O	By-product
<i>n</i> -Butanol	C ₄ H ₉ OH	Final product
Water	H_2O	By-product
Inerts (CH ₄ , N ₂)	Various	Purge

3. Typical Operating Conditions

Unit	Temp (°C)	Pressure (bar)	Notes
Hydroformylation	100-150	20–40	Rh or Co catalyst
Phase Separator	40-80	~10–20	Remove unreacted gases
Hydrogenation	120-200	10–20	Ni or Cu catalyst
Distillation	Varies	~1–2	Product purification

4. Feed Data (Example Basis)

Component Flowrate (kmol/h) Purity (%)

Propylene	100	99.9
CO	100	99.5
H_2	200	99.5

Target Production: ~50,000 tonnes/year of n-butanol

Operating Days: 330 days/year

Economic Evaluation Framework

A. Capital Costs (CapEx)

- Reactors (high-pressure)
- Gas separators
- Distillation towers
- Heat exchangers, compressors
- Catalyst recovery (optional)
- Instrumentation & control
- Safety systems

B. Operating Costs (OpEx)

Category **Description**

Raw Materials Propylene, CO, H₂

Rh or Co complex, Ni, Cu Catalyst

Utilities Steam, electricity, cooling water

Maintenance & Labor Plant operation

Waste Treatment Off-gas, aqueous purge

C. Financial Indicators

Indicator **Purpose**

IRR Return on investment over time **NPV** Net value of all future cash flows Time to recover initial investment **Payback Period** Annual Cash Flow Profit after expenses each year

D. Economic Assumptions (Typical Values)

Parameter Value

Project Life 15 years 10% Discount Rate

Depreciation 10 years, straight-line

Operating Days/Year 330 Tax Rate 30%

Parameter Value

Startup Year Loss 100% CapEx recovery over life

Final Deliverables

- 1. Aspen Plus Simulation File: Flowsheet with all major units
- 2. Process Flow Diagram (PFD): Detailed and labeled
- 3. Material and Energy Balances
- 4. Utility Requirements and Consumption
- 5. Cost Estimates: CapEx and OpEx
- 6. Economic Evaluation Spreadsheet:
 - o IRR
 - o NPV
 - o Payback period
 - o Annual cash flows
- 7. **Technical Report** summarizing:
 - Process design
 - Simulation results
 - Economic conclusions