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Abstract 

An improved mode of representation for networks 
resulting from process simulation flowcharts is 
presented based on the signal flowgraph concept. 
Decomposition of maximal cyclical nets in the 
digraph by a minimal cut-vertex set becomes a simple 
three-step procedure of reduction to intervals, elimina- 
tion of self-loops and processing of node pairs 
associated with two-way edges. Identification of 
cyclical nets is obtained as a by-product of decom- 
position. The procedure is applicable to equation- 
ordering problems if the output set is selected 
a priori. 

1. INTRODUCTION 

Many generalized systems programs have been 
developed during the past decades to compute the 
steady-state material and energy balances for broad 
classes of chemical process configurations4>8,9J3J7. 
Evans et al. 3 have recently reviewed the state of such 
programs and their characteristics. In general, these 
systems are organized in modular fashion, where the 
modules are the basic unit computations of a typical 
process such as distillation, absorption, reaction, 
heat exchange, condensation, reboiling, expansion, 
compression, pumping, decanting, flashing, etc. 
Supervising the progress of computation on the entire 
process network is the executive program which orders 
the execution sequence according to the details of the 
process flowsheet supplied as data. The distinction 
between simulation programs and design programs 
has been discussed by Forder and Hutchisons and 
the systems we refer to above fall into both classes. 
While design programs are not suitable for simulation, 
simulation programs may be used for design, though 
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somewhat inefficiently, by case study analysis. Our 
concern is primarily with simulation programs. 

The unit computation modules in all simulation 
programs, such as the CHESS system developed at 
the University of Houston l 3, do not lend themselves 
easily to being decomposed into sets of equations. 
These modules frequently contain sub-iteration 
processes and special algorithms which have been 
highly refined for a specific application to a given 
unit operation. Our reason for stressing this point 
is to distinguish the problem of decomposition of 
networks from the equation-ordering algorithms of 
Steward18 and Himmelblau627. 

The network problem deals with the inter- 
connection of modules, where each transforms its 
input data into a set of output results. The computa- 
tional sequence can readily be managed by the 
executive program for arbitrary process configurations. 
The basic problem in network analysis as addressed 
by Sargent and Westerberg16, Lee and Ruddll, 
Christensen and RuddZ and Forder and Hutchison5 
is the structuring of recycle calculations or the 
management of information feedback in an efficient 
manner so as to reduce computational time. The 
optimal sequence is obtained by cutting or tearing a 
selected set of recycle streams, i.e., edges in the graph 
of the process flowsheet, to reduce a cyclic directed 
graph or digraph to an acyclic one. The cut edges 
become the iteration parameters in forcing the 
convergence of the iterative computation by either 
direct substitution or by an algorithm such as the 
bounded Wegstein procedure lo, which lends itself 
easily to the solution of a mathematically equivalent 
system of equations of the form 

Xi+ 1 = f (Xi) (1) 

where i is the iteration count and x is the vector of 
recycle parameters contained in the edges cut by the 
decomposition process. The Wegstein procedure is a 
one-dimensional concept and should be best suited 
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for systems such as eqn. (1) where the diagonal terms 
of the Jacobian matrix of eqn. (1) are dominant since 
the forcing process is applied to each recycle para- 
meter independently. A number of multidimensional 
convergence-forcing algorithms are conceivable but 
have not yet proved practically efficient within the 
limited context of system simulation programs. 

The equation-ordering procedures, on the other 
hand, are primarily dedicated to identifying minimal 
sets of simultaneous equations for a given set of 
output variables or maximum cyclical nets in the 
context of network analysis. The simultaneous 
equations are then solved in groups using techniques 
such as the Marquardt algorithm12 or steepest- 
descent methods. The identification of cyclical nets 
is also important in the network problem, but the 
network analysis is then more concerned with the 
strategy of decomposing the separate nests by tearing. 
Both points of view have the same mathematical 
model, i.e., eqn. (1) where the x-vector in equation 
ordering is the set of variables selected a priori as the 
output set of a system of simultaneous equations. 
Himmelblau7 has presented a heuristic procedure 
for the decomposition of cyclical nets by ordering 
their occurrence matrices. Westerberg and Edielg 
have extended the equation-ordering procedure by 
including the choice of the optimum output set 
concurrently with the ordering process for additional 
computational efficiency. 
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2. CONCEPTUAL MODELS FOR NETWORK 

DECOMPOSITION 

Two basic traditions have developed for the analysis 
of networks and the ordering of equations. These and 
the new approach that we are proposing can all be 
used interchangeably in either application but with 
varying degrees of facility. All have foundations in 
graph theory but some concentrate primarily on the 
Boolean properties of the connection matrices of the 

graphs 5,6~7~14*15~18, while others deal with the 
identification of key graph theoretic elements 2,1 l,16. 

All have used directed graph formation except 
Westerberg and Edielg, whose approach implies 
bidirectional graphs, since the output variables are 
selected in the analysis. The latter approach should 
offer considerable advantage in developing design 
programs rather than simulation programs where the 
structure of the computational process and the 
choice of module inputs are dictated by specifications 
of an arbitrary set of output variables. In relation to 

simulation, a design program is frequently analogous 
to running the computations of the simulation 
program in reverse. The simulation inputs become the 
design outputs. 

In any case, the choice of conceptual framework 
has made the decomposition task more difficult than 
it should be and the literature in the field is filled 
with heuristic strategies that are involuted and 
difficult to program. 

3. A NEW MODEL 

The conceptual model that we propose’ is the 
directed graph of the flowsheet as a signal flowgraph. 
The new graph is the dual of the traditional flowsheet 
graph used most recently by Christensen and Rudd2. 
The simplicity of the resulting decomposition analysis 
will become obvious. Graph theoretic elements 
identical to those used by the latter and Sargent and 
Westerberg16 are also recognized in this new 
formulation of the problem, but additional elements 
of great analytic power also emerge, especially the 
notion of reducibility and the occurrence of self-loops. 

The basic distinction between the two representa- 
tions lies in recognizing the streams or edges in the 
flowsheet graph as signals or nodes (vertices) in the 
signal flowgraph. The nodes of the flowsheet graph, 
i.e., the process transformations, are devoid of useful 
information and become the edges of the signal 
flowgraph. The relationship between the two is 
shown in Fig. 1 for a typical cyclical net. 

Fig. la. Flowsheet graph2. Nodes are the process modules. 

Fig. lb. Signal flowgraph. Nodes are the streams of 
information. 
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DECOMPOSITION OF NETS 

The decomposition procedure on the signal flow- 
graph is effected by tearing or cutting nodes or 
vertices rather than by cutting edges as in the flow- 
sheet graph. Questions of optimality are deferred for 
later discussion. For the moment, no weighting of 
the nodes is assumed, despite the fact that each node 
includes all of the significant variables or parameters 
associated with each stream or flow of information, 
which vary in number from node to node. The first 
objective is to find the minimum cut-vertex set which 

Fig. 2a. Graph of intervals. 

@ I 

Fig. 2b. After cutting self-loop node 7. 

Fig. 2c. Decomposed graph after cutting nodes 1 and 7. 

reduces the cyclic net to an acyclic net. A brief but 
incomplete summary of the method and the resulting 
effect on the graph of Fig. 1 b leads successively to 
Figs. 2a, 2b, and 2c and the tabulation in Table 1: 

(1) Identify all intervals in the graph and reduce the 
graph to interval header nodes onIy (Fig. 2a). 
(2) Cut self-loop node 7 in Fig. 2a and repeat step 
(1) (Fig. 2b). 
(3) Cut self-loop node 1 and complete the graph 
reduction summarized in Fig. 2c. 

The primed nodes of Fig. 2c are the assumed inputs 
at the cut nodes and the dotted edges imply the intro- 
duction of a convergence-forcing computation at the 
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end of each complete cycle. The ordering of the 
computation process, module-wise, by the program 
executive is relatively simple once streams 1 and 7 
have been identified as assumed inputs and the trans- 
formations would be executed in the order A, E, B, 
C, D. Each cycle through the sequence would then be 
followed by a convergence analysis of output streams 
1 and 7 and computation repeated if necessary. 

TABLE 1 

Summary of decomposed net in Fig. lb 

Minimum Output 
Intervals cut-vertex set Intervals 

L2,3 7J 4s 
4 
5 
7,Q 

4. PROPERTIES OF GRAPHS 

The properties of the signal flowgraphs of recycle 
processes used in the analysis are applied in the 
following order, from the strongest to the weakest 
condition: 

(1) Identification of maximal cyclical nets. 
(2) Reduction of the graph to intervals. 
(3) Elimination of self-loop nodes. 
(4) Processing of nodes associated with two-way 
edges. 
(5) Cut node with maximum number of output 
edges. 

No examples have been found which cannot be 
decomposed by the routine application of these five 
steps. At the outset, we assert that no node of the 
graph will be linked to any other individual node by 
more than one input edge and one output edge. Any 
influences of node i on node j, as represented by 
parallel directed edges, are combined into one edge. 

The identification of maximal cyclical nets can be 
done efficiently by Himmelblau’s reachability matrix 
technique‘j. A considerable saving in computer storage 
requirements can be realized, however, if this is 
actually done after the signal flowgraph is reduced to 
intervals in step (2). The reachability matrix method 
works equally well on the flowchart graph formulation 
or signal flowgraph model. The algorithm used to 
reduce the graph eliminates all intervals that are 
headed by external input streams and merges all nodes 

 

 

 



268 R. W. BARKLEY AND R. L. MOTARD 

on paths that terminate on external outputs into their 
headers which are members of cyclical nets. Only 
linked cyclical nets remain after graph reduction. An 
alternative method of cyclical net identification 
within the present method is proposed below. 

An interval in the graph is the maximal single entry 
subgraph for which h is the entry node and in which 
all closed paths contain h. No vertex of the graph can 
be included in the interval headed by h unless its 
precursors are already in the interval. By identifying 
all intervals in the graph it can be partitioned into 
subgraphs, and further processing occurs only on the 
reduced graph containing only the headers of the 
subgraphs, i.e., the intervals. All edges linking any 
node in the interval with nodes outside the interval 
become properties of the header node in the reduced 

no alternative which will reduce cyclicity. Whenever a 
node is to be cut it is eliminated from the graph and 
added to a list of cut streams. Where the cut stream 
appears in a precursor list it is also eliminated and 
this may render the graph reducible again, i.e., nodes 
may now appear with single precursors. After any 
cutting process additional passes are made through 
the graph reduction algorithm to find any intervals 
which may be extended as the result of cutting. Table 
3 indicates the effect of cutting self-loop node 7. 

TABLE 3 

Further reduction after cutting 7 

Intervals Precursors Intervals Precursors 

TABLE 2 

Reduction to intervals 

1 (2,3) 1% 1 (233) (4,s) 1 
4 1 

5 0 

Node List Precursors Intervals Precursors 

1 294 1 (2,3) 1,4 
2 1 
3 1 
4 328 4 1,7 
5 2,4 5 1,4 
6 7 
I 56 7 (0) 5,7 
8 7 

graph Referring to Figs. 1 b, 2a and Table 1, an eight- 
node graph is reduced to four intervals; nodes 2 and 
3 belong to the interval headed by node 1 and nodes 
6 and 8 belong to the interval headed by 7. The graph 
of Fig. 2a is irreducible without cutting vertices. The 
algorithm for identifying intervals begins with two 
lists: a list of all nodes and their precursor nodes, 
i.e., those nodes with edges directed toward a node. 
Any node with a single precursor is said to belong to 
that precursor and is eliminated; where such a node 
previously appeared as a precursor it is replaced by its 
header node in the precursor list. Table 2 summarizes 
the reduction to intervals of Fig. lb. Repeated passes 
are made through the precursor list until all nodes 
with one precursor have been eliminated. 

/ 

Fig. 3a and b. Two-way edge elements in a graph. 

The processing of two-way edges is the next step 
in the algorithm. In most applications, self-loops and 
two-way edges are the only elements which can 
prevent the complete reduction of a cyclical net to 
one interval. The two-way edge is illustrated in Fig. 
3 and was recognized by earlier investigators2y16 as 
identifying a pair of streams of which one must 
necessarily belong to the cut set. 

Note that 6 may be included in the interval headed 
by 7 because the closed path 7-6-7 terminates on the 
header. The reduction algorithm takes care of such a 
path without special consideration. 

In Fig. 3a either node i or node i will belong to 
the cut-vertex set. Where the set of nodes in two-way 
edge elements includes a common node such as in Fig. 
3b, the common node is immediately assigned to the 

The actual cutting process begins with the appearance cut-vertex set. If all of the two-way edge vertex pairs 
of self-loops in the reduced graph. These must be are disjoint, a selection is made of the node with the 
members of the minimum cut-vertex set since there is maximum number of output edges, since this offers 
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DECOMPOSITION OF NETS 269 

a greater possibility of affecting more nodes in the 
remaining graph. In the event of a tie an arbitrary 
choice is made. The final and weakest condition in 
the algorithm is invoked if all other conditions fail 
to appear. The node with the maximum number of 
output edges is selected for cutting for the same 
reason as stated above. In the event of a tie an 
arbitrary choice is made. 

TABLE 4 

Initial reduction of S & W Example 

Reduction to intervals Two-edge pairs 
Nodes Precursors Intervals Precursors 

This completes the verbal description of the 
algorithm. 

1 5 
2 1 
3 5 
4 5 
5 6 
6 7,18 

5. APPLICATION OF THE ALGORITHM 

(6,1,2,3,4,5,14, @ 7,18 
15,16) 

Examples of the application of the decomposition 
procedure are taken from Sargent and Westerberg16 
and Christensen and Rudd2. The first example is 
shown in Fig. 4. The steps in the algorithm will be 
illustrated in list format rather than graphically. 

7 8,20 
8 2,3,9 
9 10 

10 8,20 
11 8,20 
12 11 
13 8,20 
14 4 
15 14 
16 15 
17 22,25 
18 16,17 

(1099) 
(11912) 

8,19 

0 *’ 
2 610 

0 2 8,19 
8,19 
* 

8,19 
* 
* 

19 22,25 
20 19 
21 8,20 
22 21 
23 21 
24 22,25 

25 24,21 

26 24,27 
27 28 
28 12,13,23,26,31 

(19,20) 

(21,22,23) 
0: 

3 8,19 

0* 4 21,25 

Fig. 4. Sargent and Westerberg (S & W) Example. 

The nodes with only one precursor node have 
been eliminated (*) and any occurrences of these 
nodes in the complete list of precursors have been 
replaced by their precursors. The 3 l-node graph has 
been reduced to 16 intervals, as shown in Table 4. In 
detail, the beginning of the reduction process proceeds 
as follows: 

(28,27,29) 6 @ 11,13,21, 
26,31 

29 28 
30 12,13,23,26,31 

* 

31 29,30 

0 7 11,13,21, 
26,31 

6 @ 28,30 

example 7 pairs are found (6-18,8-10, 19-21,24-25, 
26-28,28-3 1,30-3 1). Two common pair nodes are 
found, 28 and 3 1. Since one of the pairs includes 
both 28 and 3 1 the evidence indicates that the final 
cut set will include six nodes, one from each of the 
first four pairs and two from the last three. Node 28 
is cut, since it has the largest number of output edges, 
and eliminated from the list of precursors. The graph 
is reduced further as nodes become single precursor 
nodes. In the process of reduction node 3 1 becomes 
part of the interval (30,3 1) and self-loops are 
generated at nodes 24 and 30 both of which are cut, 

Node 1 belongs to node 5 
A 1 appearing as a precursor to 2 is replaced by 5 
Node 2 belongs to node 5 
Precursors of node 8 are now 5,3,9 
Node 3 belongs to node 5 

> 

Precursors of node 8 are now 5,9 
Node 4 belongs to node 5 
Precursor of node 14 is not 5 
Node 5 belongs to node 6 
Precursors of node 8 are now 6,9 
Precursor of node 14 is now 6, etc. 

The procedure for identification of pairs deter- 
mines the occurrence of mutual precursors. For this 

After nodes 28,24,30 are added to the cut set 
(Table 5) a new self-loop appears at node 21 and 
further reduction occurs as shown in Table 6. Cutting 
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270 R. W. BARKLEY AND R. L. MOTARD 

21 finally reduces the graph to two self-loops at 6 and 
8, both of which are cut. The final cut set is 
(6,8,21,24,28,30). 

TABLE 5 

S & W Example 

Cut node 28 Cut node 24 and 30 
Intervals Precursors Intervals Precursors 

6 7,18 6 7,18 
7 8,19 7 8,21 
8 6,lO 8 6,lO 
10 8,19 10 8,21 
11 8,lP 11 8,21 
13 8,lP 13 8,21 
17 21,24 
18 6,17 18 6,21 
19 21,24 
21 8,19 21 8,21 
24 21,24 24 c 
28 C 28 C 

30 11,13,21,24,30 30 C 

TABLE 6 

S & W Example 

Intervals Precursors In tetvals Precursors 

6 896 6 c 
8 6,8 8 C 

21 C 21 C 

24 C 24 C 

28 C 28 C 

30 C 30 C 

In some cases the interval reduction algorithm is 
extremely efficient. Christensen and Rudd‘s* example 
number 1 is such a case, as shown in Fig. 5. Three 
self-loops at nodes 12,16,30 identify these nodes as 
the minimum cut set as shown in Table 7. 

Another example presented by Christensen and 
Rudd is their example number 2. The process flow- 
sheet is shown in Fig. 6 and the reduced signal flow- 
graph is shown in Table 8. 

16 
/ 

Fig. 5. Christensen and Rudd (C & R) Example NO. 1. 

TABLE 7 

Initial reduction of C & R Example No. 1 

Intervals Precursors 

(16,2,3,4,5,6,7,8,17,9,10,25,26,27,28) 12,16,21,30 
(12,13,14,15,22,11,20) 12,16 
(21,23,24) 12,30 
(30,31,32,33,19,18,29) 16,30 

Fig. 6. C & R Example No. 2. 
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DECOMPOSITION OF NETS 271 

TABLE 8 

Reduced graph of C & R Example No. 2 
Final cut set = (40,11,34) 

TABLE 9 

Initial reduction of sulfuric acid plant model 
Final cut set = (58,31,46,65,60) 

Intervals 
After cutting nodes 40,l I 

Precursors Intervals Precursors 
Intervals Precursors Pair nodes 

(2,3,4,14,23,24) 11,19 

(627) 0 : 1 11,2 

(10,9) 6,20,25,34 * 
(11,12,13,8,41,16, 
17,1,5) 

o *c 
1 6,lO 11 

(19,15,22,21) 11,31 
(20) 11,31 * 

(25,26,27,28,29,30) 2,19 * 

(31,18) 34,42 * 

(34,35,36,37,32) 19,25 34 34 
(40,38,39) 40,ll 40 c 
(42,33) 40,ll * 

(4,5,6,8,25,26,27,28,29,30) 
9 
(10,ll) 

:123,14j 

(1:6,17) 

:189,20j 
(21,22,48,49) 

(23:,32,33,35,36,38,39) 

34 
40 
45 

The reduced graph in Table 8 has one self-loop 
at node 40 which is cut. There remains one two-edge 
pair (6,ll) and node 11 is cut because it has the 
larger number of output edges. Cutting 40 and 11 
reduces the graph to a self-loop at 34 which is the 
final cut stream. 

(46,42,43,47) 
50 
53 
54 
55 

As a final example, the sulfuric acid plant problem 
of Shannon et al. l7 is analyzed in Fig. 7 and Table 9. 

(58,51,52,56,57,59,67,68,69) 
(60,61,62) 
63 
64 
(65,2) 

31,65 
4,58 
4,9 
lo,58 
4,12 
13,60 
4,15 
16,60 
4,18 
19,58 
21,50 
34,40,46 

23,31 
31,65 
31,46 

21,45 
21,45 
19,58 
4,58 
lo,58 

53,54,55 
53,54,55 
13,60 
16,60 
63,64 

42 

6 A 66 

Fig. 7. Sulfuric acid plant model, Shannon et al. I7 
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272 R. W. BARKLEY AND R. L. MOTARD 

Fig. 8. Example with linked cyclical nets. 

TABLE 10 

Analysis of linked cyclical nets 

intervals Precursors 
Cut-vertex Cut-vertex 
precursors Intervals precursors 

after 28 is cut Final results 
L 

3 
4 
5 

6 0 

(8,1,7,10) OC 
9 
12 
13 
14 
15 
16 4 

(18,11,17,20,35) 8 4@ 

19 
22 
23 
24 

> 

25 
26 @ 
(28,21,27,30) Cz 
29 
31 
32 
33 
34 

8,4,34 
8,4,34 

9,8 
998 
2,5,8,18 

3,6,33 

3,6,33 
18,14,31 
18,14,31 
19,18 
19,18 
12,15,18,32 

13,16 

13,16 
28,24 
28,24 
29,28 
29,28 
22,25,28 

23,26 

23,26 
22,25,28 
29,28 
13,16 
19,18 

28 
28 
28 
28 
28 

28 8 

28 8 9 
28 
28 
28 
28 
28 

28 

28 
28 
28 
28 
28 
28 

28 

28 
28 
28 
28 
28 

18 8 19 

28 

8 29 

28,29,18,19,9,8 

28,29,18,19,9,8 

28,29,18,19 

28,29,18,19 

28,29 

28,29 
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DECOMPOSITION OF NETS 273 

6. IDENTIFICATION AND ORDERING OF 

CYCLICAL NETS 

While the reachability matrix technique of Himmel- 
blau is an efficient method for identifying maximal 
cyclical nets, it is possible to accomplish the same 
objective with the new modelling method by adding 
a simple heuristic during the decomposition process. 
To illustrate, we choose an example from Christensen 
and Rudd (ref. 2, Fig. 1 Sa) and replicate three times 
(Fig. 8) with additional feed-forward streams. 

The basic cyclical net is represented by three groups 
of modules (A,B,C,D,E), (F,G,H,I,J), (K,L,M,N,O) 
with streams (l-lo), (1 l-20), (21-30) respectively. 
Feed-forward streams linking the nets are 31-35. 
The reduced graph of the entire network is shown in 
Table 10. During the decomposition procedure a 
third list is maintained in addition to the interval list 
and the precursor list which we call the cut-vertex 
precursor list. If at any stage in the algorithm a node 
changes status by having its number of precursors 
reduced due to cutting a vertex, or by having a node 
added to its cut-vertex precursor list, the number of 
the latest cut node is added to the cut-vertex precursor 
list for this node and also wherever such a node 
appears in the precursor list. This process is carried 
on for cut nodes as well. 

16-18,23-28,26-28) containing 3 common nodes 
(8,18,28). Since 28 has the maximum number of 
output edges it would be cut first, resulting in a 
reduction of precursors (crossed-out) for nodes 
22,24,25,26,3 1 and 32. Node 28 is added to the cut- 
vertex precursor list for these nodes as well as for 
those nodes where these streams appear in the 
precursor list. This process is repeated for any nodes 
whose cut-vertex precursor list has been incremented 
as they appear as precursors to other nodes. The 
result of cutting node 28 is that all cut-vertex 
precursor lists are affected. Had node 8 been chosen 
as the initial cut only nodes 2,3,4,5,6,8 and 9 would 
have been so affected. Continuing the decomposition 
procedure in this manner leads to the final result 
shown in Table 10 and in matrix form in Fig. 9. The 
maximal cyclic nets appear as square sub-matrices 
along the main diagonal, and the order in which the 
cyclic nets should be processed is obvious: nodes 28 
and 29 depend only on each other whereas nodes 18 
and 19 depend on 28 and 29, etc. The cyclic nets 
are outlined in heavy lines and the matrix is con- 
structed by ordering the columns in ascending 
numbers of cut-vertex precursors. 

In Table 10 no self-loops are found; however, six 
two-edge node pairs are identified (3-8,6-g, 13-l 8, 

Another example of this phase of the algorithm is 
obtained by combining Fig. la with Fig. 5 with a feed- 
forward connection between module E (Fig. 1 a) and 
module K (Fig. 5). Streams of Fig. la are renumbered 
41-49, with 49 being the connection to Fig. 5. 

28 29 18 19 8 9 

cut-vertex 

precursor 

28 

29 

18 

19 

8 

9 

Fig. 9. Identification and order of cyclical nets. 

41 47 18 12 30 

41 

cut-vertex 47 

precursor 16 

12 

30 

Fig. 10. Combined Fig. la and Fig. 5. 
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274 R. W. BARKLEY AND R. L. MOTARD 

TABLE 11 

Reduction of combined Figs. la and 5 

Intervals Precursors 

41 41,44 
44 41,47 
45 41,44 
47 45,41 
16 12,16,21,30 
25 16,47 
12 12,16 
21 12,30 
30 25,30 

Because of the additional stream into module K the 
initial graph reduction is affected. Final results are 
shown in Fig. 10 and Table 11. 

interval. In some cases the number of cut vertices will 
remain the same, in others, it will not. Identifying 
those members of the set of cut intervals which do 
not change the number of cut streams offers some 
flexibility in improving computational efficiency 
while not increasing the number of cut streams. 

No property of graphs or sub-graphs has been 
discovered to identify alternate cut sets easily. The 
only recourse is to cut each member of an interval 
in turn prior to graph reduction and then to apply 
the decomposition algorithm. The same approach 
would be employed if the user wishes to specify 
preferred streams. Thus, in the problem shown in 
Fig. 6, cutting node 8 prior to reduction leads to the 
alternate cut set 8,40,3 1 instead of 40,11,34. 
Optimization should then be attempted over the 
set of alternate cut sets after these have all been 
identified. 

7. OPTIMAL CUT SETS 9. ORDERING OF UNIT COMPUTATIONS 

Some of the workers2 in the field have modified the 
decomposition process by weighting each stream 
with the number of parameters being transmitted 
between modules. The objective in the decomposition 
procedure is then revised to minimize the number of 
cut parameters rather than cut streams. This criterion 
of optimality is admittedly neither necessary nor 
sufficient since the improvement in computational 
efficiency in cutting one stream relative to another 
depends on the complexity of the unit computation 
modules as well as the number of parameters in their 
input streams. In fact, the advantage of one cut 
stream relative to another is a function of the global 
sensitivity of the cyclical net of modules to either 
stream and one would choose the stream with the 
larger sensitivity coefficient, which in itself is a 
composite effect of all the parameters in the stream. 
Truly optimal decomposition in the latter sense is a 

The ordering of unit computations for any cut set is a 
simple procedure. Given a cut set, the streams are cut 
one at a time (assumed known) and the unit computa- 
tions enabled sequentially as their inputs are generated. 
The order of cutting will change the ordering of the 
computations but the results will be equivalent. Thus, 
in the problem shown in Fig. 6, if 40,11,34 are cut 
in that order the computation sequence will be: 

BB,AA,I,J,T,K,A,CC,DD,X,Y,Z,V,U,L,M,B,C,D,E, 
F,W,P,Q,W,W,GH 

If 3 1,8,40 are cut, the computational sequence will 
be: 

U,K,A,~M,B,C,D,E,F,N,,Q,P,Q,R,W,X,Y,Z,S,G,H, 
I,J,T,BB,AA,CC,DD,V 

problem of much larger magnitude and is not attempted 
here. Instead, we offer the following observations on 
alternate cut sets and preferred streams. 

8. ALTERNATE CUT SETS AND PREFERRED 
STREAMS 

The cut set obtained by the proposed method is 
minimal in the number of elements but is not unique. 
Every header node of the sub-graphs generated during 
the initial reduction which ultimately appears in the 
cut set is potentially replaceable by members of its 

These sequences form a cycle and at the end of 
each cycle convergence forcing or direct substitution 
may be applied to the cut streams as the user chooses. 
No sub-iteration cycles are employed since the entire 
cycle nest of computations is a function of the para- 
meters of the cut streams as defined in eqn. (1). 
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